
1

A New Block Algorithm for Full-Rank Solution of
the Sylvester-observer Equation.

João Carvalho, DMPA, Universidade Federal do RS, Brasil
Karabi Datta, Dep. M.Sc., Northern Illinois University, DeKalb, IL 60115, USA

Yoopyo Hong, Dep. M.Sc., Northern Illinois University, DeKalb, IL 60115, USA

Abstract—A new block algorithm for computing a full rank so-
lution of the Sylvester-observer equation arising in state estima-
tion is proposed. The major Computational Kernels of this algo-
rithm are (i) solutions of ordinary Sylvester equations, in which
case each one of the matrices is of much smaller order than that
of the system matrix and furthermore, this small matrix can be
chosen arbitrarily, (ii) orthogonal reduction of small order matri-
ces. There are numerically stable algorithms for performing these
tasks. The algorithm is rich in Level 3 Basic Linear Algebra Sub-
programs (BLAS-3) computations and thus suitable for high per-
formance computing. Furthermore, the results on numerical ex-
periments on some benchmark examples show that the algorithm
has better accuracy than that of some of the existing block algo-
rithms for this problem.

I. INTRODUCTION

The matrix equation

XA− FX = GC (1)

where the matrices A ∈ R
n×n, C ∈ R

r×n are given and
the matrices X ∈ R

(n−r)×n, F ∈ R
(n−r)×(n−r), and G ∈

R
(n−r)×r are to be found, is called the Sylvester-observer ma-

trix equation [6].
The problem of solving (1) arises in the construction of re-

duced order Observers [14] for the linear system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(2)

in the context of State Estimation.
It is well-known that the solvability of (1) is guaranteed if

Ω(F)
⋂

Ω(A) = ∅. If F is indeed a stable matrix, once a so-
lution triple (X,F,G) of (1) is computed, an estimate x̂(t) to
the state vector x(t) can be computed by solving the following
algebraic system of equations [14]:

[

X
C

]

x̂(t) =

[

z(t)
y(t)

]

. (3)

Here z(t) is the state vector of the observer system

ż(t) = Fz(t) + Gy(t) + XBu(t) (4)

which can have any initial condition z(0) = z0.
The state estimation problem clearly requires that the solu-

tion matrix X of (1) has full rank. It is well-known [16] that

First author partially supported by NSF grant ECS-0074411 and Brazilian
CAPES grant BEX1624/98-9.

necessary conditions for existence of a full rank solution X of
(1) are that (A,C) is observable and (F,G) is controllable. We
will assume the observability of (A,C) and the matrices F and
G will be constructed in such a way that the controllability of
(F,G) will be satisfied.

The block algorithms are composed of Level-3 Blas (Basic
Linear Algebra Subprograms) computations. Such computa-
tions are ideally suited for achieving high-speed in today’s high
performance computers [8]. Indeed many traditional numerical
linear algebra algorithms for matrix computations have been
re-designed or new algorithms have been created for this pur-
pose and a high-quality mathematical software package, called
LAPACK [1] have been developed based on those block algo-
rithms. Unfortunately, block algorithms in control are rare.

A well-known method for solving the Sylvester-observer
equation, based on the observer-Hessenberg decomposition of
the observable pair (A,C), is due to Van Dooren [17]. The
method is recursive in nature and computes the solution matrix
X and the matrices F and G recursively, one row or column at
a time.

Van Dooren’s algorithm has been generalized to a block al-
gorithm by Carvalho and Datta [4]. Other block algorithms for
this problem include [2], [5], [15].

There are two basic approaches for state estimation [6]:
Eigenvalue Assignment approach and Sylvester-Observer equa-
tion approach. Since one way of finding feedback matrix for
eigenvalue assignment is via Sylvester- observer equation [10],
[16], [17], here we will pursue the Sylvester-observer equation
approach.

In this paper, we present another block algorithm for solving
the Sylvester-observer equation (1). This new algorithm seems
to be more accurate than some of the block algorithms men-
tioned above and is guaranteed to give a full-rank solution X
with a triangular structure. This structure can be exploited in
computing the first (n− r) components of the vector x̂(t) dur-
ing the process of solving the linear algebraic system (3).

II. A NEW BLOCK ALGORITHM

We propose to solve (1) by imposing some structure on the
right hand side of the equation. This means that (like in the
SVD-based method [5]) no reduction is imposed on the sys-
tem matrix A. To be more specific, given matrices A, C and a
stable self-conjugate set S, we construct matrices X , F and R
satisfying

XA− FX = R (5)

2

Ω(F) = S (6)

and such that we are able to solve GC = R for G ∈ R
(n−r)×r

later. As the solution X is being computed, a Householder-
QR [11] based strategy will reshape it so that at the end of the
process X is a full-rank upper triangular matrix.

A. Development of the Algorithm
In this section, we propose our new block algorithm for solv-

ing equation (1). First, we investigate the solution of GC = R
for G. A solution exists only if the rows of the matrix R belong
to the row space of the matrix C. Assume that the matrix C has
full rank r and let C = RcQc be the thin RQ factorization of
C, where Qc ∈ R

r×n and Rc ∈ R
r×r. If we choose

R =





N1

. . .
Nq



 Qc = NQc (7)

where Ni ∈ R
ni×r, i = 1, . . . , q, and n1 + n2 + . . . + nq =

n − r = s, then we can find a solution G ∈ R
(n−r)×r of

GC = R where GiRc = Ni, i = 1, . . . , q and

G =





G1

. . .
Gq



 . (8)

In particular, the choice N1 = Ir ensures that rank(R) =
rank(C) = r.

Second, we partition X and F conformally:

X =





X1

. . .
Xq



 , F =











F11

F21 F22

...
...

. . .
Fq1 Fq,q−1 Fqq











. (9)

Note that
rank

[

G FG . . . F n−r−1G
]

= rank
[

GRc FGRc . . . Fn−r−1GRc

]

= rank
[

N FN . . . Fn−r−1N
]

where Rc is a full rank r×r matrix. This shows that if we chose
(F,N) controllable, then automatically (F,G) is controllable.
For example if we choose N1 = Ir, N2 = ·· = Nq = 0, and F
as in (9) with full-rank blocks Fi,i−1 and Fij = 0 for j < i−1,
then (F,N) is controllable.

Substituting (7) and (9) into (5) and equating corresponding
blocks on the right and left hand sides of (5), we obtain

X1A− F11X1 = N1Qc (10)

XiA− FiiXi = NiQc +

i−1
∑

j=1

FijXj , i = 2, . . . , q. (11)

Therefore, as long as the elements of the given set S can be
successfully distributed in self-conjugate subsets Si ∈ C

ni , i =
1, . . . , q, to be assigned as eigenvalues of the block matrices
Fii, i = 1, . . . , q, we are able to construct matrices X , F and
G from their blocks computed recursively using (10) and (11).

We define

Xi =





X1

. . .
Xi



 , Gi =





G1

. . .
Gi



 (12)

F i =









F11 . . . F1,i−1 0
. 0

Fi−1,1 Fi−1,i−1 0
Fi1 Fii









. (13)

Next we will now update each X i using QR factorization, so
that the matrix X has an upper triangular structure.

After each block Xi of the solution X has been computed,
the matrix Xi defined above has the structure below:

Xi =





























∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

.
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





























,

The matrix Xi is now made upper triangular form by premulti-
plying Xi with an appropriate orthogonal matrix Qi (for exam-
ple, Qi can be product of suitable Householder matrices).

Symbolically, we write: X i ← QT
i Xi where Xi is updated

to the matrix QT
i Xi and the updated matrix QT

i Xi is overwrit-
ten by Xi.

The matrix equation

XiA− F iXi = GiC (14)

is updated to

QT
i XiA−QT

i F iQi ·Q
T
i Xi = QT

i GiC

meaning that it is possible to update the solution matrices, at
every step of the orthogonal reduction, simply by computing

Xi ← QT
i Xi , F i ← QT

i F iQi , Gi ← QT
i Gi. (15)

B. A Block Algorithm for Solving XA− FX = GC

The above discussion leads to the following algorithm:
Input: Matrices A ∈ Rn×n and C ∈ R

r×n of the system (2),
and a self-conjugate set S ∈ C

n−r .
Output: Block matrices X ,F , and G, such that Ω(F) = S and
XA− FX = GC.
Assumption: The system (2) is observable, C has full rank,
and Ω(A)

⋂

S = ∅.
Step 1: Set s = n − r, ` = r and N1 = Ir×r, G1 = R−1

c and
n1 = r.
Step 2: Compute the thin RQ factorization of C : RcQc = C
where Qc ∈ R

r×n and Rc ∈ R
r×r.

Step 3: For i = 1, 2, . . . do Steps 4 to 10
Step 4: Set Si ∈ R

` be a self-conjugate subset of the part of
S that was not used yet.

Step 5: Set Fii ∈ R
`×` to be any matrix in upper real Scour

form satisfying Ω(Fii) = Si.

3

Step 6: Free parameter setup. If i > 1 set Ni ∈ R
`×ni and

Fij ∈ R
`×nj , j = 1, . . . , i − 1 to be arbitrary matrices, such

that (F,N) is controllable. Compute Gi = NiR
−1
c .

Step 7: Solve the Sylvester equation using The Hessenberg-
Schur Algorithm [11]:

XiA− FiiXi = NiQc +

i−1
∑

j=1

FijXj

for Xi ∈ R
`×n.

Step 8: Form Xi, Gi and F i as in (12) and (13). If i > 1 then
let ni be the number of rows of Xi that are linearly independent
of the rows of Xi−1. If ni < ` then set ` = ni , choose another
set Si from S and do Steps 5 to 8 again.

Step 9: Find, implicitly, an orthogonal matrix Qi that re-
duces Xi to upper triangular form via left multiplication by QT

i ,
using, say householder matrices [6]. Then compute the matrix
updates

Xi ← QT
i Xi , Gi ← QT

i Gi , F i ← QT
i F iQi

Step 10: If n1 + . . . + ni = s then let q = i and exit loop.
Step 11: Form the matrices X = Xq , F = F q and G = Gq .

Remarks:
1) Some compatibility between the structure of the vector S

and the parameters ni, i = 1, . . . , q is required so that
Step 4 is always possible to be accomplished.

2) The algorithm does not require reduction of the system
matrices A and C. This feature is specially attractive
when A is large and sparse, as long as we are able to
exploit this structure in the solution of the subproblems
in Step 7.

3) In Step 6, it is possible to exploit the freedom of assigning
Fij to facilitate the solution of the Sylvester equation in
Step 7. In particular, the diagonal blocks Fii can be cho-
sen in Real-Schur forms, so that in the Hessenberg-Schur
algorithm only the matrix A needs to be decomposed into
Hessenberg form and this is to be done once for all the
equations in step 6.

4) If matrix A is dense, an orthogonal similarity reduction
A ← PT AP , C ← CP , can be used so to bring Hes-
senberg structure to the matrix A. This allows Step 7 to
be computed efficiently so that the whole algorithm re-
quires O(n3) flops. If (Xh, F,G) is the solution of this
reduced problem, then X = XhPT is the solution of the
original problem.

5) The algorithm is rich in Level 3-BLAS computations and
thus is suitable for high-performance computing using
LAPACK [1], [8].

Flop-count:
• Reduction of A to Hessenberg form with implicit compu-

tation of P (if needed):
10n3

3
+ 4n2r − 4r3/3 flops

• Step 2 (assuming explicit computation of Qc [11]): 4n2r−
2nr2 + 4r3/3 flops

• Step 8 : 2n2r(i− 1)− r3(i− 1)2 flops
• Steps 9 and 10: 4

[

4nr2i− 2r3i2 + 2nr2 − 2r3i
]

flops
• Step 7 (using the Hessenberg-Schur method [12]):

10n2r + nr2 flops

• Recovery of X from Xh: 4n3 flops.
Therefore, this algorithm requires approximately

77n3

3
+

29n2r

2

floating-point operations. The count for Step 7 assumes the
worst-case scenario where the eigenvalues of Fii are all non-
real.

III. AN ILLUSTRATIVE NUMERICAL EXAMPLE

To illustrate the implementation of the proposed algorithm,
consider

A =




















.995 2.041 −3.162 3.112 −2.69 .126 2.576
2.694 0.815 2.552 1.953 1.438 −2.547 1.255
1.953 −1.010 .117 1.144 2.694 3.035 1.739
−2.231 −1.635 3.101 1.437 −.956 −1.430 2.340
1.462 .829 .076 −3.292 −.852 −2.465 −1.228
3.431 −2.182 −1.959 2.366 3.037 .544 3.268
−.722 −.419 1.307 −.590 2.300 .798 −1.580





















C =
[

0.204 5.542 5.057 4.685 4.370 6.415 1.757
4.785 4.506 2.679 5.564 0.060 4.374 5.140

]

S =
{

−1. −1.− 1. i −1. + 1. i −2.− 1. i −2. + 1. i
}

Step 1: l = 2, N1 = I2.
Step 2: the RQ factorization of C gives

Rc =

[

−7.625162 −9.136243
−11.264567

]

Qc =
[

0.482 −0.474 −0.018 −0.282 0.117 0.637 0.209
−0.425 0.458 0.314 −0.561 0.063 0.308 0.313

]

Step 3: i = 1.
Step 4: S1 =

{

−1.00 + 1.00i −1.00− 1.00i
}

Step 5: We set F11 to be

F11 =

[

−1 −1
1 −1

]

and clearly Ω(F11) = S1.
Step 6: The free assignment is done via

N1 =

[

1 0
0 1

]

by simplicity.
Step 7: Solving X1A− F11X1 = N1Qc gives

X1 =
[

−.134 .280 .067 −.055 .103 −.444 .235
−.398 −.104 .438 −.124 .314 −.027 .219

]

as solution of this Sylvester equation.
Step 8: n1 = 2 , l = min{2, 7− 2− 2} = 2.
Step 9: The orthogonal matrix that reduces X1 is

Q1 =

[

−.318454 −.947938
−.947938 .318454

]

and after the reduction

4

X1 =
[

.420 −.107 .271 .171 .263 −.144 .471
0 −.014 −.198 −.136 −.217 −.079 .421

]

F11 =

[

−1 1
−0.000000 −1

]

, G1 =

[

.0418 .0503

.1243 −.1291

]

Step 3: i = 2.
Step 4: S2 =

{

−2.00− 1.00i −2.00 + 1.00i
}

.
Step 5: We set F22 to be

F22 =

[

−2 −1
1 −2

]

and clearly Ω(F22) = S2.
Step 6: The free assignment is done via

N2 =

[

.0 .0

.0 .0

]

, F21 =

[

1. .0
.0 1.

]

by simplicity.
Step 7: Solving X2A− F22X1 = N2Qc + F21X1 gives X2

such that
[

X1

X2

]

=








.420 −.107 .271 .171 .263 −.144 .471
.0 −.014 −.198 −.1359 −.217 −.079 .421

.072 −.024 .089 .068 .115 −.032 .030

.213 −.138 .051 .129 .217 −.044 .235









.
Step 8: n2 = 2 , l = min{2, 7− 2 + (2 + 2)} = 1.

Step 9: The orthogonal matrix that reduces
[

X1

X2

]

is

Q2 =









−.881700 .444581 .112851 .110531
.0 −.179335 .951465 −.250105

−.151624 .000728 −.251158 −.955996
−.446782 −.877603 −.137469 .106308









and after the reductions
[

X1

X2

]

=








−.476 .160 −.275 −.218 −.347 .151 −.525
.0 .076 .111 −.012 −.035 −.011 −.072
.0 .0 −.187 −.145 −.235 −.078 .414
.0 .0 .0 .001 −.003 .030 −.056









[

F11 F12

F21 F22

]

=









−1.089 −.355 −1.289 .661
−.417 −1.612 −.292 1.061
.869 −.871 −1.241 −.194
.082 −1.098 −.257 −2.057









[

G1

G2

]

=









−.0368 −.0443
−.0037 .0455
.1230 −.1172
−.0265 .0378









Step 3: i = 3.
Step 4: S3 = {−1.0000}.
Step 5: We set F33 = −1.0000.
Step 6: The free assignment is done via N3 =

[

0 0
]

,
F32 =

[

1 0
]

.
Step 7: Solving X3A− F33X3 = N3Qc + F32X2 gives X3

such that





X1

X2

X3



 =













−.476 .160 −.275 −.218 −.347 .151 −.525
.0 .076 .111 −.012 −.035 −.011 −.072
.0 .0 −.187 −.145 −.235 −.078 .414
.0 .0 .0 .001 −.003 .030 −.056

.0.238 −.156 .069 .165 .270 −0.009 .0.256













.
Step 8: n3 = 1 , l = min{2, 7− 2 + (2 + 2 + 1)} = 0.

Step 9: The orthogonal matrix that reduces





X1

X2

X3



 is

Q3 =












−.894709 .296784 .050001 −.325600 .053847
.0 −.747318 .099536 −.648165 .107192
.0 .0 −.988717 −.147791 .024441
.0 .0 .0 −.163162 −.986599

.446649 .594504 .100160 −.652229 .107864













and after the reductions




X1

X2

X3



 =













.532 −.213 .277 .269 .431 −.140 .584
.0 −.102 −.124 .043 .084 .047 .051
.0 .0 .188 .148 .239 .082 −.417
.0 .0 .0 −.007 −.006 −.030 −.001
.0 .0 .0 .0 .004 −.026 .057

















F11 F12 F13

F21 F22 F23

F31 F32 F33



 =













−1.0712 −.2134 −1.5465 −.3715 .6611
−.2554 −1.1787 −.3756 −.2876 .6524
.8103 −.8537 −1.2097 −.3026 −.2851
−.1410 −.5662 .0558 −1.4735 .7897
.0974 −.7623 −.1601 −.8292 −2.0669

















G1

G2

G3



 =













.0329 .0397
−.0081 −.0472
−.1238 .1182
.0005 −.0039
.0267 −.0377













Step 10: Since n1 +n2 +n3 = 7− 2 we set p = 3 and exit the
loop.
Step 11: The algorithm finishes with matrices X ∈ R

5×7 ,
F ∈ R

5×5 and G ∈ R
5×2 obtained from their blocks shown

above.

It can be shown that ‖XA−FX−GC‖F = 2.4037×10−15.
Also

eig(F) =























−1.00000000000000 + 1.00000000000000i,
−1.00000000000000− 1.00000000000000i,

−1.00000000000000,
−2.00000000000000 + 1.00000000000000i,
−2.00000000000000− 1.00000000000000i























�

5

0 50 100 150 200 250 300
2

4

6

8

10

12

14

16

18

20

22
cp

u tim
e(

n)
/d

ge
m

m
tim

e(
n)

 dimension n

B Hess−obs
SVD
Param QR

0 50 100 150 200 250 300
10−16

10−14

10−12

10−10

10−8

10−6

10−4

 |X
A−

FX
−G

C|
F

 dimension n

Hess−obs
SVD
Param QR

Fig. 1. Here n is the size of the system matrix A = Pentoep(n), regarded
as pentadiagonal. The dash-dotted line corresponds to the proposed algorithm,
the dashed line to the SVD-based algorithm and the solid line to the Hessenberg
reduction algorithm.

Comparison of Efficiency and Accuracy with existing block
algorithms:

Figures 1 and 2 show a comparison, in terms of accuracy and
speed, of the proposed algorithm with the recent SVD-based [5]
and the observer-Hessenberg reduction based [4] algorithms.
The comparison is made on benchmark testing with the fam-
ily Pentoep of pentadiagonal toeplitz matrices [13]. Speed
is measured in terms of normalized cpu-time, that is, the re-
quired cpu-time is divided by the cpu-time of a call to the
LAPACK routine dgemm for multiplying two arbitrary matri-
ces. Accuracy is measured by computing the Frobenius norm
‖XA − FX − GC‖F . The benchmarks were done in Mat-
lab 6 in Pentium II 400 MHz environment; they show that the
proposed algorithm can achieve a better accuracy with a com-
parable speed in structured problems.

IV. CONCLUSION

A new block algorithm for solving the Sylvester-observer
equation is proposed. The algorithm does not require the re-
duction of the system matrix A as long as the solution of small
sized standard Sylvester equations do not required this reduc-
tion. This algorithm is well-suited for high-performance imple-
mentation using LAPACK and it seems to be accurate compared
with similar ones; numerical stability properties have not been
studied yet.

0 50 100 150 200 250 300
0

5

10

15

20

25

cp
u tim

e(
n)

/d
ge

m
m

tim
e(

n)

 dimension n

B Hess−obs
SVD
Param QR

0 50 100 150 200 250 300
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

 |X
A−

FX
−G

C|
F

 dimension n

Hess−obs
SVD
Param QR

Fig. 2. Here n is the size of the system matrix A = Pentoep(n), regarded
as toeplitz. The dash-dotted line corresponds to the proposed algorithm, the
dashed line to the SVD-based algorithm and the solid line to the Hessenberg
reduction algorithm.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammerling, A.
Mckenney and D. Sorensen. LAPACK User’s Guide, Second
Edition. SIAM, Philadelphia, PA, 1995.

[2] C. Bischof, B. Datta and A. Purkayastha, A parallel algorithm
for the Sylvester observer equation, SIAM J. Sci. Comp., 17,
686-698, 1996.

[3] D. Calvetti, B. Lewis and L. Reichel,On the solution of large
Sylvester-observer equation, Num. Lin. Alg. Appl. 8 nr. 6-7,
435-452, 2001.

[4] J. Carvalho and B. Datta, A new block algorithm for the
Sylvester- observer equation arising in state-estimation. Proc.
IEEE International Conference on Decision and Control, Or-
lando, pp 3398-3403, 2001.
observer

[5] B. Datta and D. Sarkissian, Block algorithms for state estima-
tion and functional observers, Proc. IEEE International Sym-
posium on Computer-Aided Control System Design, Anchor-
age, pp. 19-23, 2000.

[6] B. Datta, Numerical Methods for Linear Control Systems De-
sign and Analysis. Academic Press, to appear in 2002.

[7] K. Datta, The matrix equation AX −XB = R and its appli-
cations. Lin. Alg. Appl, 109, 91-105, 1988.

[8] J. Dongarra, I. Duff, D. Sorensen and H. Van der Vorst. Nu-
merical Linear Algebra for High-performance Computers.
SIAM Press, 1998.

[9] J. Doyle and G. Stein, Robustness with Observers. IEEE
Trans. Aut. Contr., AC-26, pp.4-16, 1981.

6

[10] G.R. Duan, Solutions of the equations AV + BW = V F

and their application to eigenstructure assignment in linear
systems, IEEETAC, 38, no. 2, pp. 276-280, 1993.

[11] G. Golub, C. Van Loan, Matrix Computations, 3rd. ed., Johns
Hopkins Univ. Press, 1996.

[12] G.Golub, S.Nash and C.Van Loan,A Hessenberg-Schur
method for the problem AX+XB = C, IEEE Trans. Autom.
Contr. AC-24, pp. 909-913, 1979.

[13] N.J. Highan, The Test Matrix Toolbox for Matlab. Numer.
Anal. Rep. 276, Manchester Centre for Comput. Mathemat-
ics, Univ. of Manchester, UK, 1995.

[14] D. Luenberger, Observing the state of a linear system. IEEE
Trans. Mil. Electr., 8, 74-80, 1964.

[15] B. Shafai and S.P. Bhattacharyya, An algorithm for Pole as-
signment in high order multivariable systems, IEEETAC, vol.
33, no. 9, pp. 870-876, 1988.

[16] E.DeSouza , S.P. Bhattacharyya, Controllability, observabil-
ity and the solution of AX − XB = C, Lin. Alg. Appl. 39,
167-188, 1981.

[17] P. Van Dooren, Reduced order observers: A new algorithm
and proof. Syst.Cont.Lett. 4, 243-251, 1984.

[18] Y. Zhang and J. Wang, Global exponential stability of recurent
neural networks for synthesizing linear feedback control sys-
tem via pde assignment, IEEE TNN, vol. 13, pp. 633-644,
2002.

