Dedução da Equação do Calor

Rafael Rigão Souza e Leonardo Fernandes Guidi Setembro de 2007

Uma primeira dedução

Vamos considerar a difusão de calor em uma barra cilíndrica homogênea de comprimento L, cuja seção transversal apresenta pequeno diâmetro, e que não troca calor com o meio externo a não ser através de suas extremidades. Vamos supor que a temperatura seja a mesma em cada ponto de uma mesma seção transversal, de forma que só dependa de $x \in (0, L)$ (distância ao extremo esquerdo) e t > 0 (tempo). Logo a temperatura é dada por uma função de duas variáveis u(x,t).

Vamos considerar um pequeno segmento do cilindro de comprimento $2\delta > 0$ centrado em x. Temos, para Δt pequeno,

$$\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t} \cong A\left(\frac{\Delta Q}{\Delta t}\right) \frac{1}{2\delta},$$

onde $\frac{\Delta Q}{\Delta t}$ significa o fluxo de calor que entra neste pequeno segmento

e A é uma constante associada à capacidade térmica da barra. A aproximação acima representa o fato de a taxa de variação de temperatura ser proporcional ao fluxo de calor que entra neste pequeno segmento e inversamente proporcional ao seu comprimento.

Ora, para h positivo e pequeno $(h \ll \delta)$, temos

$$\frac{\Delta Q}{\Delta t} \cong \frac{\Delta Q_{E,\delta,h}}{\Delta t} - \frac{\Delta Q_{D,\delta,h}}{\Delta t},$$

onde

$$\frac{\Delta Q_{E,\delta,h}}{\Delta t} \cong B \frac{u(x-\delta-h,t) - u(x-\delta+h,t)}{2h}$$

é o fluxo de calor que passa pelo extremo esquerdo do segmento (posição $x-\delta),$ e

$$\frac{\Delta Q_{D,\delta,h}}{\Delta t} \cong B \frac{u(x+\delta-h,t) - u(x+\delta+h,t)}{2h}$$

é o fluxo de calor que passa pelo extremo direito do segmento (posição $x+\delta$). Em ambas as expressões B é uma constante ligada à condutividade térmica da barra.

Agora, para h muito pequeno, temos as aproximações

$$\frac{\Delta Q_{E,\delta,h}}{\Delta t} \cong -Bu_x(x-\delta,t) \quad \text{e} \quad \frac{\Delta Q_{D,\delta,h}}{\Delta t} \cong -Bu_x(x+\delta,t).$$

Portanto

$$\frac{\Delta Q}{\Delta t} \cong B(u_x(x+\delta,t) - u_x(x-\delta,t)).$$

Como

$$u_x(x+\delta,t) - u_x(x-\delta,t) \cong 2\delta \ u_{xx}(x,t),$$

obtemos a EDP do calor $u_t = ku_{xx}$, ao fazermos k = AB e lembrarmos que

$$u_t = \lim_{\Delta t \to 0} \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}.$$

Dedução em um caso mais geral.

Seja um corpo sólido, de condutividade térmica k, que ocupa uma região limitada e conexa $\Lambda \subset \mathbb{R}^n$. Vamos considerar ainda que sua superfície, $\partial \Lambda$ é suficientemente diferenciável (o suficiente para garantir a aplicação do teorema da divergência).

De acordo com a lei de Fourier para a condução do calor, o fluxo de energia térmica por Λ , Φ_{Λ} , relaciona-se ao gradiente de temperatura em sua superfície através da expressão¹

$$\Phi_{\Lambda}(t) = -k \oint_{\partial \Lambda} \nabla u(t, \xi) \cdot \mathbf{n}(\xi) d^{n-1} \xi, \tag{1}$$

onde $\Phi_{\Lambda}(t)$ é o fluxo por Λ no tempo t, k é a condutividade térmica do corpo, $\mathbf{n}(\xi)$ é a normal à superfície $\partial \Lambda$ no ponto $\xi \in \partial \Lambda$ e $\nabla u(t,\xi)$ é o gradiente da temperatura nesse mesmo ponto.

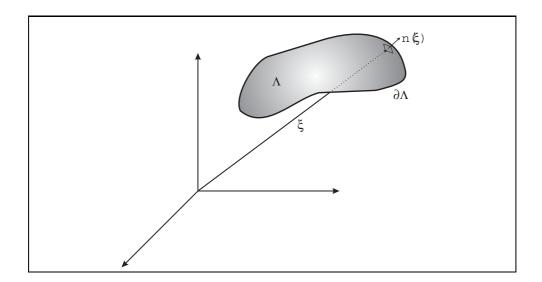
A relação entre variação de temperatura e transferência de energia térmica em um dado ponto do corpo é dada por

$$\frac{\partial Q}{\partial t}(t,x) = c \rho \frac{\partial u}{\partial t}(t,x), \tag{2}$$

onde Q é a energia térmica, c é o calor específico do corpo e ρ a sua densidade de massa.²

 $^{^{1}}$ O sinal negativo em (1) é reflexo da $2^{\underline{a}}$ lei da termodinâmica, se uma região possui temperatura superior à sua vizinhança, o fluxo de calor é positivo, ou seja, essa região perde energia térmica.

²Eventualmente, as quantidades k, c e ρ podem ser funções das demais variáveis. Por exemplo, sabe-se que calor específico varia com a temperatura; a densidade de massa poderia depender do ponto.



Obtemos a equação do calor a partir das equações (1) e (2) e do teorema da divergência.

O princípio da conservação de energia garante que no intervalo de tempo entre os instantes τ_0 e τ_1 , a energia térmica transferida através da superfície somada à variação interna de energia térmica é uma quantia nula.

A quantidade de energia térmica recebida pelo corpo entre os instantes τ_0 e τ_1 é dada por

$$\int_{\tau_0}^{\tau_1} \Phi_{\Lambda}(t) dt. \tag{3}$$

De alguma forma essa energia é distribuída pelo corpo, porém estamos supondo que independentemente do modo como ela é distribuída, a relação entre a sua variação em um ponto e a variação da temperatura nesse mesmo ponto é dada por (2). Assim, a integração de (2) por todos os pontos de Λ e no intervalo de tempo (τ_0, τ_1) é igual a

$$\int_{\tau_0}^{\tau_1} \int_{\Lambda} \frac{\partial Q}{\partial t}(t, x) d^n x \, dt$$

e mede a variação de energia térmica no volume Λ . Portanto, o princípio da conservação de energia garante que

$$\int_{\tau_0}^{\tau_1} \int_{\Lambda} \frac{\partial Q}{\partial t}(t, x) d^n x \, dt + \int_{\tau_0}^{\tau_1} \Phi_{\Lambda}(t) \, dt = 0 \tag{4}$$

para qualquer intervalo (τ_0, τ_1) e qualquer Λ .

Substituindo (1) e (2) em (4) temos

$$\int_{\tau_0}^{\tau_1} \int_{\Lambda} c \rho \, \frac{\partial u}{\partial t}(t, x) d^n x \, dt - \int_{\tau_0}^{\tau_1} k \oint_{\partial \Lambda} \nabla u(t, \xi) \cdot \mathbf{n}(\xi) d^{n-1} \xi \, dt = 0$$

e utilizando o teorema da divergência para a segunda integral da equação anterior

$$\int_{\tau_0}^{\tau_1} \int_{\Lambda} c \rho \, \frac{\partial u}{\partial t}(t,x) d^n x \, dt - \int_{\tau_0}^{\tau_1} k \int_{\Lambda} \Delta u(t,x) d^n x \, dt = 0$$

que implica

$$\int_{\tau_0}^{\tau_1} \int_{\Lambda} \left(c \, \rho \, \frac{\partial u}{\partial t}(t,x) - k \Delta u(t,x) \right) d^n x \, dt = 0,$$

onde Δu é o laplaceano de u (no \mathbb{R}^3 e em coordenadas cartesianas, $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$). Como a integral anterior é nula e independe das regiões de integração, podemos concluir que a temperatura do corpo satisfaz a equação

$$\frac{\partial u}{\partial t} = \frac{k}{c \,\rho} \Delta u,$$

que é a equação do calor em uma forma mais geral.