Departamento de Matemática Pura e aplicada -UFRGS Lista de Exercícios para Cálculo Numérico Autor: Prof. João Batista Carvalho

Matp06 - Métodos Numéricos para Equações Diferenciais Notas de aula - 2003/1 (adaptadas para 2012/1)

Conteúdo programático da disciplina:

- 1. Propagação de erros numéricos;
- 2. Derivação e integração numérica;
- 3. Métodos de passo simples e múltiplo; explícitos e implícitos.
- 4. Métodos de discretização parcial; o Método das Linhas.
- 5. Revisão de pré-requisitos básicos.
- 6. Análise de estabilidade numérica: Fourier, Von Neumann, espectral.
- 7. Convergência e o teorema de Lax-Wendroff, Lax-Richtmeyer.
- 8. Solução numérica de equações parabólicas.
- 9. Solução numérica de equações hiperbólicas.
- 10. Solução numérica de equações elípticas.

1 Propagação de erros numéricos e estimativas

Em Análise Numérica duas fontes de erros numéricos se sobresaem: erros de arredondamento e erros de truncamento. Definições precisas dessas fontes de erros dependem do problema em questão .

Exemplo 1.1 : Recursão escalar.

Considere a avaliação numérica da seguinte recursão :

$$\begin{cases} x_{n+1} = 4x_n - 1 , n > 1 \\ x_1 = 1/3 \end{cases}$$

A solução analítica é $x_n = 1/3$ para todo $n \ge 0$.

A solução numérica em Gnu-Fortran 77 (g77), usando precisão dupla em ambiente IBM PC e Linux, nos dá a tabela seguinte.

n	x_n	n	x_n	
1	0.3333333333	21	0.333251953	program exemplo1
2	0.3333333333	22	0.333007812	double precision y
3	0.3333333333	23	0.33203125	integer n i
4	0.3333333333	24	0.328125	niteger ii,i
5	0.3333333333	25	0.3125	n = 40
6	0.3333333333	26	0.25	n = 40 n = 1.000/2
7	0.3333333333	27	0.	x = 1.000/3
8	0.3333333333	28	-1.	101-1,11
9	0.3333333333	29	-5.	$w = 4^* w = 1.000$
10	0.3333333333	30	-21.	x = 4 x = 1.000
11	0.3333333333	31	-85.	end do
12	0.3333333333	32	-341.	end
13	0.3333333332	33	-1365.	
14	0.333333328	34	-5461.	# Script em Maple
15	0.333333313	35	-21845.	printlevel:=0;
16	0.333333254	36	-87381.	n:=40; x:=1.0/3;
17	0.333333015	37	-349525.	for 1 from 1 to n do
18	0.333332062	38	-398101.	$print(1,x); x = 4^x-1.0;$
19	0.333328247	39	-5592405.	end do;
20	0.333312988	40	-22369621.	

A explicação do fenômeno é simples: por não ter uma representação binária finita, o número real 1/3 não pode ser representado exatamente no computador:

$$\frac{1}{3} = \frac{1}{4-1} = \frac{1/4}{1-1/4} = \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots$$
$$\Rightarrow \frac{1}{3} = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \dots = (0.01010101\dots)_2$$

e assim temos que $x_1 = 1/3 + \epsilon$, onde ϵ é um número de magnitude muito pequena que depende da aritmética ponto flutuante utilizada pelo computador.

Dessa forma, existe uma única fonte de erro, e uma propagação desastrosa:

$$x_1 - \frac{1}{3} = \epsilon$$

$$x_2 - \frac{1}{3} = 4(x_1 + \epsilon) - \frac{1}{1} - \frac{1}{3} = 4\epsilon$$

$$x_3 - \frac{1}{3} = 4(x_2 + \epsilon) - \frac{1}{1} - \frac{1}{3} = 4^2\epsilon$$

e de uma forma generalizada temos $x_n - 1/3 = 4^{n-1}\epsilon$. Dessa forma o erro numérico é quadruplicado a cada iteração .

Definição 1.1 Erros que ocorrem devido ao fato do computador trabalhar apenas com números com representação binária finita são chamados erros de arredondamento.

Definição 1.2 Um número real a possui representação no computador a ser denotada por fl(a) ou \hat{a} .

Exemplo 1.2 : Avaliação de funções transcendentes.

Diferentemente das funções algébricas, funções transcendentes não podem ser avaliadas como um número finito de operações aritméticas $(+, -, *, \div)$.

 \bullet Considere a avaliação numérica da raiz quadrada de um número positivo a dado. Essa tarefa, ao computador, normalmente é feita através da recursão :

$$x_{n+1} = \frac{x_n}{2} - \frac{a}{2x_n}, n > 1$$

onde o valor inicial x_0 é adequadamente definido em termos de a.

Novamente, **erros de arredondamento** estão presentes em todos os estágios da computação . Entretanto, uma característica dessa recursão é a rápida convergência ao valor desejado, o que minimiza tremendamente a propagação dos erros de arredondamento.

Pode-se mostrar que $fl(\sqrt{fl(a)}) = fl(\sqrt{a})$, ou seja, a resposta dada pelo computador ainda é a melhor possível em aritmética finita.

 \bullet Considere a avaliação numérica da exponencial de um número realadado.

Ao computador, a exponencial pode ser calculada através de sua série ou expansão de Taylor:

$$e^{a} = \sum_{i=0}^{\infty} \frac{a^{i}}{i!} = 1 + a + \frac{a^{2}}{2!} + \frac{a^{3}}{3!} + \dots +$$

Os termos parciais

$$s_n = \sum_{i=0}^n \frac{a^i}{i!} = 1 + a + \frac{a^2}{2} + \frac{a^3}{6} + \ldots + \frac{a^n}{n!}$$

são então avaliados em IBM PC Gnu-Fortran77:

ĺ	n	s_n	$ s_n - e^a $	
I	1	2.609437912434101	0.23905620875E + 01	
I	2	3.904583109424218	0.10954168905E + 01	
İ	3	4.599401703471827	0.40059829652E + 00	
	4	4.878968550352922	0.12103144964E + 00	1.0
	5	4.968957646838940	0.31042353161E - 01	program exemplo2
	6	4.993096290770655	0.69037092293E-0 2	double precision
	7	4.998646240584719	0.13537594153E - 02	a,a_n,s_n,e_n
	8	4.999762778040077	0.23722195992E - 03	integer nmax,n,i
	9	4.999962444452445	0.37555547555E - 04	
	10	4.999994579521835	0.54204781641E-05	$a = \log(5.0D0)$
I	11	4.999999281285380	0.71871461937E-0 6	nmax = 25
	12	4.9999999911885088	0.88114910923E - 07	$a_n = 1.0D0$
	13	4.9999999989955171	0.10044828080E - 07	$s_n = 1.0D0$
	14	4.9999999998930096	0.10699032771E-08	do $n=1, max$
	15	4.9999999999893068	0.10693135266E - 09	$a_n = a a_n / n$
	16	4.9999999999989933	0.10065726031E-10	$s_n = s_n + a_n$
	17	4.9999999999999104	0.89528384706E-12	$e_n = abs(exp(a)-s_n)$:+ -(* :: (:2 :: (:
	18	4.999999999999924	0.75495165675E-13	write($+, (13, x, 130, 10, x, e20, 12)^{*}$)
	19	4.9999999999999993	0.62172489379E-14	n,s_n,e_n
I	20	4.99999999999999998	0.88817841970E-15	end do
	21	4.99999999999999998	0.88817841970E - 15	end
	22	4.99999999999999998	0.88817841970E-15	
	23	4.99999999999999998	0.88817841970E-15	
	24	4.99999999999999998	0.88817841970E-15	
	25	4,99999999999999998	0.88817841970E - 15	

Além dos inevitáveis erros de arredondamento, ao calcular cada s_n , temos também um **erro de truncamento**, pelo fato de não estarmos considerando os termos finais (cauda) da série.

Nesse exemplo, os erros de arredondamento podem ser desprezados em comparação aos erros de truncamento (diferentes ordens de magnitude).

2 Derivação e integração numéricas

Exemplo 2.1 : Avaliação numérica de derivadas.

Seja o problema de calcular numericamente f'(1) para uma dada função contínua $f(x): I \longrightarrow \mathbb{R}, 1 \in I.$

A estratégia é aproximar a derivada por diferentes **fórmulas de diferenças fini-tas**:

$$d_1(h) = \frac{f(1+h) - f(1)}{h}, \ d_2(h) = \frac{f(1+h) - f(1-h)}{2h}$$
$$d_3(h) = \frac{f(1+2h) - f(1+h) + f(1)}{h}$$

e gostaríamos de saber se alguma das fórmulas acima deveria ser preferida às demais. Lembramos a **Série de Taylor** para f(x) em x = 1:

$$f(1+h) = f(1) + hf'(1) + \frac{h^2 f''(1)}{2!} + \frac{h^3 f^{(3)}(1)}{3!} + \ldots + \frac{h^n f^{(n)}(1)}{n!} + \ldots$$

assumindo que f(x) seja analítica em alguma vizinhança de x = 1. Temos então

$$d_1(h) = \frac{1}{h} \left[f(1) + hf'(1) + \frac{h^2 f''(1)}{2!} + \frac{h^3 f^{(3)}(1)}{3!} + \dots - f(1) \right] = f'(1) + \frac{hf''(1)}{2!} + \frac{h^2 f^{(3)}(1)}{3!} + \frac{h^3 f^{(4)}(1)}{4!} + \dots +$$

ao passo que

$$d_{2}(h) = \frac{1}{2h} \left[f(1) + hf'(1) + \frac{h^{2}f''(1)}{2!} + \frac{h^{3}f^{(3)}(1)}{3!} + \dots + \frac{h^{n}f^{(n)}(1)}{n!} + \dots \right]$$
$$- \left(f(1) - hf'(1) + \frac{h^{2}f''(1)}{2!} - \frac{h^{3}f^{(3)}(1)}{3!} + \dots + \frac{(-1)^{n}h^{n}f^{(n)}(1)}{n!} + \dots \right) =$$
$$f'(1) + \frac{h^{2}f^{(3)}(1)}{3!} + \frac{h^{5}f^{(5)}(1)}{5!} + \dots + \frac{h^{7}f^{(7)}(1)}{7!} + \dots$$

е

$$d_{3}(h) = \frac{1}{h} \left[\left(f(1) + 2hf'(1) + \frac{(2h)^{2}f''(1)}{2!} + \frac{(2h)^{3}f^{(3)}(1)}{3!} + \frac{(2h)^{4}f^{(4)}(1)}{4!} + \dots \right) \right. \\ \left. - \left(f(1) + hf'(1) + \frac{h^{2}f''(1)}{2!} + \frac{h^{3}f^{(3)}(1)}{3!} + \frac{h^{4}f^{(4)}(1)}{4!} + \dots \right) + f(1) \right] = \frac{f(1)}{h} + f'(1) + \frac{3hf''(1)}{2!} + \frac{7h^{2}f^{(3)}(1)}{3!} + \frac{15h^{3}f^{(4)}(1)}{4!} + \dots \right]$$

As quantidades

$$e_1(h) = d_1(h) - f'(1)$$

$$e_2(h) = d_2(h) - f'(1)$$

$$e_3(h) = d_3(h) - f'(1)$$

são **erros de truncamento** pois são resultado da aproximação de um operador de dimensão infinita (a derivada) por uma diferença finita.

Vemos que apenas as duas primeiras aproximações podem ser úteis na aproximação de f'(1) se $f(1) \neq 0$.

Definição 2.1 No contexto de nosso problema, uma aproximação é **consistente** se o correspondente erro de truncamento tende a zero ao h tender a zero.

As aproximações d_1 e d_2 são consistentes, enquanto que d_3 é inconsistente. Aém disso, assintoticamente,

$$d_1(h) = f'(1) + O(h) \text{ ao } h \to 0$$

$$d_2(h) = f'(1) + O(h^2) \text{ ao } h \to 0$$

e então d_1 é um aproximação consistente de **primeira ordem**, ao passo que d_2 é uma aproximação consistente de **segunda ordem**.

A tabela abaixo mostra a computação dessas duas aproximações para o caso em que $f(x) = \exp(x)$.

h	$e_1(h)$	$e_2(h)$	program exemplo3
0.1E + 01	0.1952E + 01	0.4762E + 00	double precision
0.1E + 00	0.1406E + 00	0.4533E - 02	h,d1,d2,de,one
0.1E - 01	0.1364E - 01	0.4530E - 04	integer i
0.1E - 02	0.1360E - 02	0.4530E - 06	one=1.0D0
0.1E - 03	0.1359E - 03	0.4531E - 08	h = one
0.1E - 04	0.1359E - 04	0.5859E - 10	de = exp(one)
0.1E - 05	0.1359E - 05	-0.1635E - 09	do i=1,16
0.1E - 06	0.1399E - 06	0.5859E - 10	d1=(exp(one+h)-
0.1E - 07	-0.6603E - 08	-0.6603E - 08	$\exp(one))/h$
0.1E - 08	0.2154E - 06	-0.6603E - 08	d2=(exp(one+h)-exp(one-
0.1E - 09	0.1548E - 05	-0.6727E - 06	(h))/(2*h)
0.1E - 10	0.3263E - 04	0.1043E - 04	write(*,'(e9.1,1x,e13.5,1x,e13.5)')
0.1E - 11	0.4323E - 03	0.2103E - 03	h,d1-de,d2-de
0.1E - 12	-0.4559E - 03	-0.4559E - 03	$\mathbf{h} = \mathbf{h}/10;$
0.1E - 13	-0.9338E - 02	-0.9338E - 02	end do
0.1E - 14	0.3903E + 00	0.1683E + 00	end

Definição 2.2 Chama-se de Quadratura Numérica o problema de avaliar, numeri- onde camente,

$$I = \int_{a}^{b} f(x) dx$$

para uma dada função f(x), e para um intervalo [a, b], para os quais sabemos que essa quantidade realmente existe, isto é, quando f é dita ser integrável no intervalo [a, b].

Neste capítulo aplicaremos técnicas matemáticas na solução do problema da quadratura numérica de uma função dada, ou a partir de aproximação de uma tabela de dados.

Métodos de Integração definida: quanto à natureza, podem ser

- Analíticos: são os que usam o Teorema Fundamental do Cálculo ou fórmulas de recorrência a integrais mais simples;
- Numéricos: discutidos nesta disciplina;
- Semi-analíticos ou semi-numéricos: f é aproximada por funções ϕ_i mais simples, como por exemplo, via Aproximação Funcional, e então as quantidades

$$\int_{a}^{b}\phi_{i}(x)dx,$$

que aproximam a quantidade que procuramos, são calculadas analiticamente.

Métodos de Integração definida: podem ser determinísticos ou probabilísticos

- determinísticos: a função f é avaliada em um conjunto suficientemente grande de pontos x_i , i = 0, 1, ..., n, que podem ter um espaçamento fixo (quadratura fixa), ou podem ter espaçamento variável (quadratura adaptativa). Construimos uma fórmula de integração a partir do polinômio interpolador correspondente;
- probabilísticos: os que valem-se da caracterização de integral definida de uma f em algum intervalo como "área com sinal"entre o gráfico dessa f e os eixos coordenados. Por causa da caracterização como área, métodos Monte-Carlo podem ser usados.

Quadratura adaptativa: usando uma partição de pontos $x_0 < x_1 < x_2 < \ldots < x_n$, escrevemos

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x)dx$$

- fazemos os intervalos menores nas regiões onde f varia mais bruscamente (maior erro nas fórmulas de integração);
- fazemos os intervalos maiores nas regiões onde f é mais suave (menor erro nas fórmulas de integração).

Nas próximas seções, desenvolveremos estratégias consagradas de quadratura determinística:

• fórmulas de Newton-Côtes (quadratura newtoniana), cujo grande retrato é

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} w_{i}f(x_{i});$$
(1)

• quadratura gaussiana, cujo grande retrato é

$$\int_{a}^{b} f(x)w(x)dx = \sum_{i=0}^{n} w_{i}f(x_{i});$$
(2)

bem como suas aplicações a

- quadratura recursiva;
- quadratura de integrandos com singularidade.

2.1 Fórmulas de Newton-Côtes

São derivadas usando interpolação por polinômios de Lagrange. Vantagem: Sendo ϕ um interpolador de grau n nos n + 1 pontos

$$x_0 = a, x_1, x_2, \dots, x_n = b$$

então a correspondente fórmula será EXATA toda vez que f for um polinômio de grau menor ou igual a n.

n = 1: Regra do Trapézio

$$\phi(x) = \frac{(x-b)}{a-b}f(a) + \frac{(x-a)}{b-a}f(b)$$
$$\int_{a}^{b} f(x) \approx \int_{a}^{b} \left(\frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b)\right)dx =$$
$$f(a)\int_{a}^{b} \frac{x-b}{a-b}dx + f(b)\int_{a}^{b} \frac{x-a}{b-a}dx = f(a)\left[\frac{(x-b)^{2}}{2(a-b)}\right]_{a}^{b} + f(b)\left[\frac{(x-a)^{2}}{2(b-a)}\right]_{a}^{b} =$$
$$f(a)\frac{-(a-b)^{2}}{2(a-b)} + f(b)\frac{(b-a)^{2}}{2(b-a)}$$

e a após simplificação obtemos

$$\int_{a}^{b} f(x)dx \approx \frac{f(a) + f(b)}{2}(b - a) \tag{3}$$

n=2: Regra de Simpson, seja $c=(a+b)/2,\,2h=b-a,$

$$\phi(x) = \frac{(x-c)(x-b)}{(a-c)(a-b)}f(a) + \frac{(x-a)(x-b)}{(c-a)(c-b)}f(c) + \frac{(x-a)(x-c)}{(b-a)(b-c)}f(b)$$

e assim

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left(\frac{(x-c)(x-b)}{(a-c)(a-b)}f(a) + \frac{(x-a)(x-b)}{(c-a)(c-b)}f(c) + \frac{(x-a)(x-c)}{(b-a)(b-c)}f(b)\right)dx = \frac{f(a)}{(a-c)(a-b)}\int_{a}^{b} (x-c)(x-b)dx + \frac{f(c)}{(c-a)(c-b)}\int_{a}^{b} (x-a)(x-b)dx + \frac{f(b)}{(b-a)(b-c)}\int_{a}^{b} (x-a)(x-c)dx$$

e assim

$$\begin{split} & \int_{a}^{b} f(x)dx \approx \frac{f(a)}{(a-c)(a-b)} \left[\frac{(c-a)(b-a)^{2}}{2} - \frac{(b-a)^{3}}{6} \right] + \\ & \frac{f(c)}{(c-a)(c-b)} \frac{(a-b)^{3}}{6} + \frac{f(b)}{(b-a)(b-c)} \left[\frac{(b-c)(b-a)^{2}}{2} - \frac{(b-a)^{3}}{6} \right] = \\ & \frac{f(a)}{(-h)(-2h)} \left[\frac{(h)(2h)^{2}}{2} - \frac{(2h)^{3}}{6} \right] + \frac{f(c)}{(h)(-h)} \cdot \frac{(-2h)^{3}}{6} + \\ & \frac{f(b)}{(2h)(h)} \left[\frac{(h)(2h)^{2}}{2} - \frac{(2h)^{3}}{6} + \right] = \frac{f(a)}{2h^{2}} \cdot \frac{4h^{3}}{6} - \frac{f(c)}{h^{2}} \cdot \frac{-8h^{3}}{6} + \frac{f(b)}{2h^{2}} \cdot \frac{4h^{3}}{6} - \frac{f(c)}{h^{2}} + \frac{f(b)}{2h^{2}} \cdot \frac{4h^{3}}{6} + \frac{f(b)}{2h^{2}} \cdot \frac{4h^{3}}{6} - \frac{f(c)}{h^{2}} + \frac{f(b)}{2h^{2}} \cdot \frac{4h^{3}}{6} + \frac{f(b)}{2h^{2}} + \frac{f(b)}{2h^{2}} + \frac{f(b)}{6} + \frac{f(b)}{2h^{2}} + \frac{f(b)}{6} + \frac{f(b)}{2h^{2}} + \frac{f(b)}{6} + \frac{f(b)}{2h^{2}} + \frac{f(b)}{6} + \frac{f(b)}{6} + \frac{f(b)}{2h^{2}} + \frac{f(b)}{6} $

e a após simplificação obtemos

$$I = \int_{a}^{b} f(x)dx \approx \frac{f(a) + 4f(c) + f(b)}{6}(b - a)$$
(4)

Exemplo 2.2 : Avaliar numericamente, em Scilab,

$$I = \int_0^{\pi^2/4} \sin{(\sqrt{1+x})} dx$$

(a) usando a Regra do Trapézio; (b) usando a Regra de Simpson.

A sequência de comandos em Scilab:

$$--> a = 0; b =$$

 $--> function u = f(x)$
 $--> u = sin(sqrt(1+x)); endfunction$
 $--> It = (f(a) + f(b))*(b-a)/2$
 $--> Is = (f(a) + 4*f(c) + f(b))*(b-a)/6$

produz as aproximações I = 2.2198498 e I = 2.3801058, respectivamente para as regras de Trapézio e Simpson.

Teorema: Se f é uma função contínua em um intervalo [a, b], e se $f^{(2)}(x)$ é limitada em [a, b], então a regra do Trapézio possui erro de truncamento local

$$E = \frac{h^3}{12} |f^{(2)}(\xi)|, \xi \in (a, b)$$
(5)

onde h = b - a.

Demonstração: omitida

Teorema: Se f é uma função contínua em um intervalo [a, b], e se $f^{(4)}(x)$ é limitada em [a, b], então a regra de Simpson possui erro de truncamento local dado por

$$E = \frac{h^5}{90} |f^{(4)}(\xi)|, \xi \in (a, b)$$
(6)

onde h = (b - a)/2.

Demonstração: omitida

Quadratura Composta Uniforme

No contexto de quadratura newtoniana, ou seja, das fórmulas de Newton Côtes, dependendo do tamanho do intervalo de integração e da natureza não-polinomial da função f, as fórmulas básicas apresentadas podem nos dar aproximações bem rudimentares (baixa exatidão) para o valor exato da integral definida.

Como estratégia para vencer esse obstáculo, podemos usar Regra do Trapézio e Regra de Simpson (ou qualquer outra fórmula de quadratura) em intervalos menores, aproveitando a propriedade aditiva da integral definida.

Nesse sentido, duas estratégias para solução desse problema são apresentadas.

Quadratura Composta Fixa

Uma vez escolhido um número N de intervalos, escrevemos

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{1}} f(x)dx + \int_{x_{1}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{3}} f(x)dx + \dots + \int_{x_{N-1}}^{x_{N}} f(x)dx$$

onde $x_0 = a, x_N = b$ e $x_i - x_{i-1} = (b-a)/N$. Assim, fórmulas de baixa ordem (por exemplo, Trapézio e Simpson) são aplicadas em cada sub-intervalo.

Quadratura Composta do Trapézio:

$$I = \sum_{i=1}^{N} \frac{f(x_{i-1}) + f(x_i)}{2} (x_i - x_{i-1})$$
(7)

onde h = (b - a)/N.

Quadratura Composta de Simpson:

$$I = \sum_{i=1}^{N} \frac{f(x_{i-1}) + 4f(x_{i-1/2}) + f(x_i)}{6} (x_i - x_{i-1})$$
(8)

onde h = (b - a)/N, $x_{i-1/2} = (x_{i-1} + x_i)/2$ (indice fracionário).

Exemplo 2.3 (Regra Composta do Trapézio): Avaliar numericamente a integral

$$I = \int_0^{\pi^2/4} \sin{(\sqrt{1+x})} dx$$

usando a Regra Composta do Trapézio e 3 intervalos.

A sequência de comandos em *Scilab*: --> N=3; x0=0; x3 = %pi*%pi/4; h = (x3-x0)/N; --> x1 = x0 + h; x2 = x0 + 2*h; --> function u = f(x) --> u = sin(sqrt(1+x)); endfunction --> I1 = (f(x0) + f(x1))*(x1-x0)/2; --> I2 = (f(x1) + f(x2))*(x2-x1)/2; --> I3 = (f(x2) + f(x3))*(x3-x2)/2; --> I = I1 + I2 + I3 produz a aproximação I = 2.3636473.

Exemplo 2.4 (Regra Composta de Simpson) : Avaliar numericamente a integral

$$I = \int_0^{\pi^2/4} \sin\left(\sqrt{1+x}\right) dx$$

usando a Regra Composta de Simpson e 3 intervalos.

A sequência de comandos em *Scilab*: -> N=3; x0=0; x3 = %pi*%pi/4; h = (x3-x0)/N; -> x1 = x0 + h; x2 = x0 + 2*h;-> x0m = (x0+x1)/2; x1m = (x1+x2)/2; x2m = (x2+x3)/2;

$$\begin{array}{l} --> \mbox{ function } u = f(x) \\ --> \mbox{ u = sin(sqrt(x)); endfunction} \\ --> \mbox{ I1 = } (f(x0) + 4^*f(x0m) + f(x1))^*(x1-x0)/6; \\ --> \mbox{ I2 = } (f(x1) + 4^*f(x1m) + f(x2))^*(x2-x1)/6; \\ --> \mbox{ I3 = } (f(x2) + 4^*f(x2m) + f(x3))^*(x3-x2)/6; \\ --> \mbox{ I = I1 + I2 + I3} \\ \end{array}$$

produz a aproximação I = 2.3829249.

Quadratura Composta Recursiva - quadratura de Romberg

No contexo da Quadratura Composta Fixa, um problema que surge é : Como encontrar o N adequado antes de começar o procedimento ?

A estratégia de Quadratura Composta Recursiva vem corrigir essa dificuldade, através da avaliação de uma sequência de aproximações

$$I_n = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x) dx, \text{ onde } x_i - x_{i-1} = \frac{b-a}{n}$$

se possível usando, recursivamente, as aproximações anteriores ao cálculo de cada I_n . Em cada intervalo, alguma fórmula de quadratura de baixa ordem (Trapézio ou Simpson) deve ser usada. Além disso, devemos testar a convergência dos I_n ao n crescer.

Regra Composta Recursiva do Trapézio

Dada uma função f(x) definida no intervalo [a, b], seja s_n a aproximação de

$$\int_{a}^{b} f(x) dx$$

que usa a Regra Composta do Trapézio e 2^n intervalos. Para a determinação de s_{n+1} , 1 ponto deve ser adicionado em cada um dos 2^n intervalos, determinando então $2 \cdot 2^n = 2^{n+1}$ novos intervalos. Necessitamos avaliar a função f APENAS nos 2^n novos pontos adicionados, desde que seja possível fazer apenas uma correção no valor de s_n .

Algoritmo: (Regra Composta Recursiva Trapezoidal) Entrada: função f, números reais $a \in b$, parâmetro de tolerância TOL.

Saída: Aproximação s_n para $\int_a^b f(x)dx$ Passo 1: n = 0; $h_0 = b - a$; $s_0 = (f(a) + f(b))h_0/2$; segue=1 Passo 2: Enquanto segue=1 Passo 3: n = n + 1; Passo 4: $h_n = \frac{h_{n-1}}{2}, g_n = \sum_{i=1}^{2^n-1} f(a+i \cdot h_n)$

Tabela 1:	Aplicação	da Regra	Composta	Recursiva do	Trapézio.
		0	-		-

n	s_n	δ_n
0	2.2198498	-
1	2.3400418	0.988
2	2.372051	1.569
3	2.3802356	2.163
4	2.3822954	2.762
5	2.3828113	3.364
6	2.3829403	3.966
7	2.3829725	4.567
8	2.3829806	5.170

Passo 5: $s_n = \frac{s_{n-1}}{2} + g_n h_n$ **Passo 6:** Se TOL já foi alcançado, segue $\leftarrow 0$. Fim Enquanto Retorne s_n

Exemplo 2.5 : Avaliar numericamente, em Scilab,

$$I = \int_0^{\pi^2/4} \sin{(\sqrt{1+x})} dx$$

usando a Regra Recursiva do Trapézio, com 5 casas decimais significativas corretas.

A sequência de comandos em Scilab

--> function u=f(x)

--> u = sin(sqrt(1+x));endfunction

--> getf('digse.sci');

$$--> a = 0; b = \% pi \land 2/4;$$

$$--> n=0; hn = b-a; sn=(f(a)+f(b))*hn/2;$$

 $\begin{array}{c} -->n{=}n{+}1;hn{=}hn/2;gn{=}0;for~i{=}1{:}2{:}(2^{**}n{-}1);gn{=}gn{+}f(a{+}i^{*}hn);end;\\ sa{=}sn;sn{=}sn/2{+}gn^{*}hn;[n~sn~digse(sa,sn)] \end{array}$

permite construir a tabela 1, onde observamos uma convergência linear de aproximadamente $0.60~{\rm digse/iter}.$

Regra Composta Recursiva de Simpson

Dada uma função f(x) definida no intervalo [a, b], seja s_n a aproximação de

$$\int_{a}^{b} f(x) dx$$

que usa a Regra Composta de Simpson e 2^n intervalos. Para a determinação de s_{n+1} , 1 ponto deve ser adicionado em cada um dos 2^n intervalos, determinando então $2 \cdot 2^n = 2^{n+1}$ novos intervalos. Necessitamos avaliar a função f APENAS nos 2^n novos pontos adicionados, desde que seja possível fazer apenas uma correção no valor de s_n .

Algoritmo: (Regra Composta Recursiva de Simpson) Entrada: função f, números reais $a \in b$, parâmetro de tolerância TOL.

Saída: Aproximação
$$s_n$$
 para $\int_a^b f(x)dx$
Passo 1: $n = 0$; $h_0 = (b - a)/2$; $d_0 = f(a) + f(b)$;
Passo 2: $g_0 = f(a + h_0)$; $s_0 = \frac{h_0(d_0 + 4g_0)}{3}$; segue = 1;
Passo 3: Enquanto segue=1
Passo 3: $n = n + 1$;
Passo 4: $h_n = \frac{h_{n-1}}{2}$, $d_n = d_{n-1} + 2g_{n-1}$
Passo 5: $g_n = \sum_{\substack{i \ge 1, \text{impar} \\ 3}} f(a + i \cdot h_n)$
Passo 6: $s_n = \frac{h_n(d_n + 4g_n)}{3}$
Passo 7: Se TOL já foi alcançado, segue $\leftarrow 0$.
Fim Enquanto
Retorne s_n

Exemplo 2.6 : Avaliar numericamente, em Scilab,

$$I = \int_0^{\pi^2/4} \sin\left(\sqrt{1+x}\right) dx$$

usando a Regra Composta Recursiva de Simpson, com 4 casas decimais significativas corretas.

A sequência de comandos em *Scilab* --> function u=f(x) --> u = sin(sqrt(1+x));endfunction --> getf('digse.sci'); $--> a = 0; b = \% pi \land 2/4;$ --> n=0;hn=(b-a)/2;dn=f(a)+f(b); --> gn=f(a+hn);sn = (dn+4*gn)*hn/3--> n=n+1; hn=hn/2; dn=dn+2*gn; gn=0; for i=1:2:(2**(n+1)-1);

Tabela 2: Aplicação da Regra Composta Recursiva de Simpson.

n	s_n	δ_n
0	2.3801058	-
1	2.3827208	2.659
2	2.3829638	3.690
3	2.382982	4.817
4	2.3829832	5.994

gn=gn+f(a+i*hn); end; sa=sn; sn=(dn+4*gn)*hn/3; [n sn digse(sa,sn)] permite construir a tabela 2, onde observamos uma convergência linear de aproximadamente 1.20 digse/iter.

2.2 Quadratura Gaussiana

Observamos que a expressão de Taylor com resto de Lagrange para uma função f(x) sendo interpolada em um conjunto de nós distintos $\{x_0, x_1, x_2, \ldots, x_n\}, x_0 \ge a, x_n \le b$ é dada por

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2} + \dots + \frac{f^{(n)}(x_0)(x - x_0)^n}{n!} + \frac{f^{(n+1)}(\xi)(x - x_0)(x - x_1)\dots(x - x_n)}{(n+1)!}, \quad (9)$$

para algum ξ entre x e x_0 , e uma vez que sabemos que o resto de Lagrange deve anular-se para $x = x_j, j = 0, 1, 2, ..., n$. Dessa forma, temos

$$f(x) = \phi(x) + E_{tr}(x), \qquad (10)$$

onde

$$\phi(x) = \sum_{k=0}^{n} L_k(x) f(x_k)$$
$$L_k(x) = \prod_{\substack{0 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k - x_j)}$$

é a interpoladora Lagrangiana de grau $\leq n$, sobre $\{x_0, x_1, \ldots, x_n\}$, e

$$lE_{tr}(x) = p_n(x)q_n(x)$$
(12)
$$p_n(x) = (x - x_0)(x - x_1)\dots(x - x_n)$$
(13)
$$q_n(x) = \frac{f^{(n+1)}(\xi)}{(x - x_0)!}.$$
(14)

$$q_n(x) = \frac{f(x)}{(n+1)!}.$$

Sendo w(x) uma função peso escolhida, que deve satisfazer $w(x) \ge 0$ em [a, b], integramos a equação (10), obtendo

$$I = \int_{a}^{b} f(x)w(x)dx = \int_{a}^{b} \phi(x)w(x)dx + \int_{a}^{b} E_{tr}(x)w(x)dx.$$
 (15)

Nosso objetivo nesta seção será apresentar estratégias que existem para minimizar

$$\int_{a}^{b} E_{tr}(x)w(x)dx = \int_{a}^{b} p_n(x)q_n(x)w(x)dx$$
(16)

para um dado intervalo [a, b], usando projeção em espaços polinomais gerados por bases ortogonais conhecidas. Deverá ser sempre lembrado que é a estratégia de projeção que determinará o valor dos parâmetros da respectiva fórmula de quadratura

$$I = \int_{a}^{b} f(x)w(x)dx \approx \int_{a}^{b} \sum_{k=0}^{n} L_{k}(x)f(x_{k})w(x)dx = \sum_{k=0}^{n} w_{k}f(x_{k})$$
(17)

onde

$$w_k = \int_a^b L_k(x)w(x)dx.$$
 (18)

determina os pesos da fórmula de quadratura.

Será importante definirmos ortogonalidade generalizada (com *peso*) em um intervalo [a, b]: dois polinômios p(x) e q(x) são ortogonais em um intervalo [a, b], com peso w(x), se

$$\int_{a}^{b} p(x)q(x)w(x)dx = 0.$$
 (19)

Quadratura de Gauss-Legendre

Apresentamos os polinômios de Legendre, definidos recursivamente no intervalo [-1,1] por

$$P_0(x) = 1, P_1(x) = x$$

$$P_{n+1}(x) = \left(\frac{2n+1}{n+1}\right) x P_n(x) - \frac{n}{n+1} P_{n-1}(x), \quad n \ge 1$$
(20)

(12) Estes polinômios têm a propriedade de ser ortogonais no intervalo [-1, 1], com peso (13) $w(x) \equiv 1$, isto é,

$$\int_{-1}^{1} P_n(x) P_j(x) dx = \begin{cases} 0, & n \neq j \\ \frac{1}{2^n}, & n = j \end{cases}$$
(21)

(11)

Decompondo os polinômios p_n e q_n , definidos em (13)-(14) em termos dos polinômios de Legendre, escrevemos

$$p_n(x) = \sum_{k=0}^{n+1} b_k P_k(x) \tag{22}$$

$$q_n(x) = \sum_{j=0}^{n} c_j P_j(x).$$
 (23)

Dessa forma, temos

$$p_n(x)q_n(x) = \left(\sum_{k=0}^{n+1} b_k P_k(x)\right) \left(\sum_{j=0}^n c_j P_j(x)\right) = \sum_{k=0}^n \sum_{j=0}^n b_k c_j P_k(x) P_j(x) + b_{n+1} \sum_{j=0}^n c_j P_k(x) P_j(x)$$

e então, substituindo essa expressão em (10) e movendo para fora da integral as constantes

$$\int_{-1}^{1} p_n(x)q_n(x)dx = \sum_{k=0}^{n} \sum_{j=0}^{n} b_k c_j \int_{-1}^{1} P_k(x)P_j(x)dx + b_{n+1} \sum_{j=0}^{n} c_j \int_{-1}^{1} P_k(j)P_j(x)dx = \sum_{k=0}^{n} b_k c_k \int_{-1}^{1} P_k^2(x)dx$$

em virtude das relações de ortogonalidade (14). Assim, podemos anular a expressão acima desde que estabeleçamos

$$b_0 = b_1 = \ldots = b_k = 0,$$

o que implica $p_n(x) = b_{n+1}P_{n+1}(x)$ e que por sua vez implica que as abscissas x_0, x_1, \ldots, x_n sejam as n+1 raízes de $P_{n+1}(x)$, o polinômio de Legendre de grau n+1. Também implica (veja Sperandio 2003, Ralston 1978) que a correspondente fórmula de quadratura será exata para polinômios de grau menor ou igual a (2n+1).

A tabela 3 mostra, para n = 1, 2, 3, as raízes dos polinômios de Legendre de grau n + 1.

Dessa forma, a fórmula de quadratura de Gauss-Legendre para n+1 pontos pode ser escrita

$$\int_{-1}^{1} f(x)dx \approx \sum_{k=0}^{n} w_k f(x_k)$$
(24)

onde $x_0, x_1, x_2, \ldots, x_n$ são definidos na tabela 3, para n = 1, 2, 3.

Tabela 3: Parâmetros da Quadratura de Gauss-Legendre.

n	x_k	w_k
1	$-\sqrt{1/3}$	1
	$\sqrt{\frac{1}{3}}$	5/9
2		8/9
	$\sqrt{3/5}$	5/9
	$-\sqrt{3/7+(6/7)\sqrt{2/15}}$	$1/2 - (1/18) \sqrt{15/2}$
2	$-\sqrt{3/7 - (6/7)\sqrt{2/15}}$	$1/2 - (1/18)\sqrt{15/2}$ $1/2 + (1/18)\sqrt{15/2}$
	$\sqrt{3/7 - (6/7)\sqrt{2/15}}$	$1/2 + (1/18)\sqrt{15/2}$
	$\sqrt{3/7 + (6/7)\sqrt{2/15}}$	$1/2 - (1/18)\sqrt{15/2}$

Em particular, ressaltamos os casos n = 1 e n = 2, que são os mais usados: (n = 1) Quadratura de Gauss-Legendre usando 2 pontos.

$$\int_{-1}^{1} f(x)dx \approx f\left(-\sqrt{\frac{1}{3}}\right) + f\left(\sqrt{\frac{1}{3}}\right) \tag{25}$$

exata para polinômios de grau ≤ 3 . (n = 2) Quadratura de Gauss-Legendre usando 3 pontos.

$$\int_{-1}^{1} f(x)dx \approx \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$$
(26)

exata para polinômios de grau ≤ 5 .

Exemplo 2.7 : Encontrar a fórmula de Gauss-Legendre para

$$\int_0^1 f(x)dx$$

usando 2 pontos.

Solução: pensamos em uma substituição $u = \alpha x + \beta$, onde então

$$\begin{cases} -1 = \alpha(0) + \beta \\ 1 = \alpha(1) + \beta \end{cases} \Rightarrow \alpha = 2, \beta = -1 \Rightarrow u = 2x - 1$$

Fazendo a substituição u = 2x - 1, du = 2dx

$$\int_0^1 f(x)dx = \int_{-1}^1 f\left(\frac{u+1}{2}\right)\frac{du}{2} = \int_{-1}^1 g(u)du,$$

onde

$$g(u) = \frac{f((u+1)/2)}{2}.$$

Caso f seja polinômio de grau n sabemos que g também será polinômio de grau n . Assim

$$\int_0^1 f(x)dx = g\left(\frac{-1}{\sqrt{3}}\right) + g\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{2}f\left(\frac{-1/\sqrt{3}+1}{2}\right) + \frac{1}{2}f\left(\frac{1/\sqrt{3}+1}{2}\right)$$

e assim a fórmula

$$\int_{0}^{1} f(x)dx = \frac{1}{2} f\left(\frac{3-\sqrt{3}}{6}\right) + \frac{1}{2} f\left(\frac{3+\sqrt{3}}{6}\right)$$
(27)

é exata para todos os polinômios de grau ≤ 3 .

Exemplo 2.8 : Avaliar numericamente, em Scilab,

$$I = \int_0^1 \ln(1 + \sqrt{x}) dx$$

usando o método de Gauss-Legendre para 2 pontos.

Usaremos a fórmula obtida no exemplo anterior. Os comandos em Scilab

 $\begin{array}{l} --> \mbox{ w0= } 0.5; \mbox{ w1 = } 0.5; \\ --> \mbox{ function } \mbox{ u = } f(\mbox{ x}) \\ --> \mbox{ u = } \log(\ 1 + \mbox{ sqrt}(\mbox{ x})\); \mbox{ endfunction } \\ --> \mbox{ x0= } (3-\mbox{ sqrt}(\mbox{ 3}))/6; \mbox{ x1 = } (3+\mbox{ sqrt}(\mbox{ 3}))/6; \\ --> \mbox{ I = } \mbox{ w0*}f(\mbox{ x0}) + \mbox{ w1*}f(\mbox{ x1}) \\ \mbox{ produz a aproximação } I = 0.5068943. \end{array}$

Exemplo 2.9 : Avaliar numericamente

$$\int_0^{\pi^2/4} \sin\left(\sqrt{1+x}\right) \, dx$$

usando quadratura de Gauss-Legendre com 2 pontos.

Para obtenção da fórmula apropriada, é necessária uma mudança de variável do intervalo $[0, \pi^2/4]$ para o intervalo [-1, 1]: $u = \alpha x + \beta$ onde

$$x = 0 \Rightarrow \alpha(0) + \beta = -1 \Rightarrow \beta = -1$$
$$x = \pi^2/4 \Rightarrow \alpha \pi^2/4 - 1 = 1 \Rightarrow \alpha = 2/(\pi^2/4) = 8/(\pi^2)$$

e então $u = 8x/\pi^2 - 1, \, du = 8/\pi^2 dx$, e

$$\int_0^{\pi^2/4} f(x)dx = \int_{-1}^1 f\left(\frac{\pi^2(u+1)}{8}\right)\frac{\pi^2}{8}du = \int_{-1}^1 \frac{\pi^2}{8}f\left(\frac{\pi^2(u+1)}{8}\right)du.$$

Usando (27), obtemos

$$\int_0^{\pi^2/4} f(x)dx = \frac{\pi^2}{8} \left[f\left(\frac{\pi^2}{8} \left(\frac{-1}{\sqrt{3}} + 1\right)\right) + f\left(\frac{\pi^2}{8} \left(\frac{1}{\sqrt{3}} + 1\right)\right) \right]$$

e segue que a fórmula

$$\int_{-\infty}^{\pi^2/4} f(x)dx = 1.2337f(0.521423) + 1.2337f(1.94598)$$

é exata para polinômios de grau menor ou igual a 3.

A sequência de comandos em *Scilab*:

$$\begin{array}{l} --> \mbox{ function } u = f(x) \\ --> \ u = \sin(\operatorname{sqrt}(1+x)); \mbox{endfunction} \\ --> \ w0 = 1.2337; \ w1 = w0; \\ --> \ x0 = 0.521423; \ x1 = 1.94598; \\ --> \ I = \ w0^* f(x0) + \ w1^* f(x1) \\ \mbox{produz a aproximação } I = 2.3848163. \end{array}$$

Quadratura de Gauss-TChebyshev

Apresentamos os polinômios de TChebyshev $T_n(x) = \cos(n * \arccos(x)), n \ge 0$, definidos no intervalo [-1, 1]. Sabidamente, satisfazem a recursão

$$T_0(x) = 1, T_1(x) = x$$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad n \ge 1.$$
(28)

Estes polinômios têm a propriedade de ser ortogonais no intervalo [-1, 1], com peso $w(x) = (1 - x^2)^{-1/2}$, isto é,

$$\int_{-1}^{1} T_n(x) T_j(x) \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} 0, & n \neq j \\ \frac{\pi}{2}, & n = j \neq 0 \\ \pi, & n = j = 0 \end{cases}$$
(29)

Decompondo os polinômios p_n e q_n , definidos em (13)-(14) em termos dos e assim polinômios de TChebyshev, escrevemos

$$p_n(x) = \sum_{k=0}^{n+1} b_k T_k(x)$$
(30)
$$q_n(x) = \sum_{j=0}^n c_j T_j(x).$$
(31)

Dessa forma, analogamente ao desenvolvimento na seção (2.2), usamos a propriedade onde de ortogonalidade dada em (29) para obter $p_n(x) = b_{n+1}T_{n+1}(x)$ e que por sua vez implica que as abscissas x_0, x_1, \ldots, x_n sejam as n+1 raízes de $T_{n+1}(x)$, o polinômio de TChebyshev de grau n + 1. Também implica que a correspondente fórmula de quadratura será exata para polinômios de grau menor ou igual a (2n + 1).

Pode-se mostrar que as raízes de $T_{n+1}(x)$ são dadas por

$$x_k = \cos\left(\frac{\pi(2k+1)}{2(n+1)}\right) \tag{32}$$

para k = 0, 1, 2, ..., n. Pode-se mostrar também que os pesos são dados por

$$w_k = \frac{\pi}{n+1} \tag{33}$$

para k = 0, 1, 2, ..., n. Dessa forma, a fórmula de quadratura de Gauss-TChebyshev para n+1 pontos pode ser escrita

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n+1} \sum_{k=0}^{n} f(x_k)$$
(34)

onde $x_0, x_1, x_2, \ldots, x_n$ são definidos por (32).

Exemplo 2.10 : Avaliar numericamente

$$\int_0^{\pi^2/4} \sin\left(\sqrt{1+x}\right) \, dx$$

 $u = 8x/\pi^2 - 1, \, du = 8/\pi^2 dx,$

usando quadratura de Gauss-TChebyshev com 4 pontos.

têm a propriedade de ser ortogonais no intervalo $[0,\infty)$, com peso $w(x) = e^{-x}$, isto Na obtenção da fórmula apropriada, usamos a mudanca de variável obtida no é, Exemplo (2.9):

$$\int_0^\infty L_n(x)L_j(x)e^{-x}dx = \begin{cases} 0, & n \neq j \\ 1, & n = j \end{cases}$$

(36)

$$\int_0^{\pi^2/4} f(x)dx = \int_{-1}^1 f\left(\frac{\pi^2(u+1)}{8}\right)\frac{\pi^2}{8}du = \int_{-1}^1 \frac{\pi^2}{8}f\left(\frac{\pi^2(u+1)}{8}\right)du.$$

e assim

2 / 4

$$\int_{0}^{\pi^{2}/4} f(x)dx = \int_{-1}^{1} \frac{g(u)}{\sqrt{1-u^{2}}}du$$

$$g(u) = \frac{\pi^2 \sqrt{1 - u^2}}{8} f\left(\frac{\pi^2(u+1)}{8}\right).$$

A sequência de comandos em Scilab

$$\begin{array}{l} --> \mbox{ function } y = f(x) \\ --> \mbox{ y = sin(sqrt(1+x)); endfunction} \\ --> \mbox{ function } y = g(u) \\ --> \mbox{ y = } \% pi \land 2^* sqrt(1-u^*u)^* f(\ \% pi \land 2^*(u+1)/8\)/8; \\ --> \mbox{ endfunction} \\ --> \ //\ n = 3\ // \\ --> \ u0 = \ cos(\ \% pi^*(2^*0+1)/8\); \\ --> \ u1 = \ cos(\ \% pi^*(2^*0+1)/8\); \\ --> \ u2 = \ cos(\ \% pi^*(2^*1+1)/8\); \\ --> \ u3 = \ cos(\ \% pi^*(2^*3+1)/8\); \\ --> \ I = \ (\% pi/4)^*(g(u0) + g(u1) + g(u2) + g(u3)) \\ \mbox{ produz a aproximação } I = 2.4401498. \end{array}$$

Quadratura de Gauss-Laguerre

Apresentamos os polinômios de Laguerre, definidos em $[0,\infty)$ como sendo soluções não-singulares da equação diferencial xy'' + (1-x)y' + ny = 0. Sabidamente, esta equação diferencial tem soluções não-singulares somente se n é inteiro não-negativo. Polinômios de Laguerre, que satisfazem a relação recursiva

$$L_0(x) = 1, L_1(x) = 1 - x$$

$$L_{n+1}(x) = \frac{1}{n+1} \left[(2n+1-x)L_n(x) - nL_{n-1}(x) \right], \quad n \ge 1,$$
(35)

1	n	x_k	w_k
Γ.	1	0.585786437627	0.853553390593
	T	3.414213562373	0.14644669407
		0.415774556783	0.711093009929
6	2	2.294280360279	0.278517733569
		6.289945082937	0.103892565016
	0	0.322547689619	0.603154104342
		1.745761101158	0.357418692438
	0	4.536620296921	$0.388879085150 \cdot 10^{-1}$
		9.395070912301	$0.539294705561 \cdot 10^{-3}$
		0.2635603197	0.5217556106
		1.413403059	0.39866681108
4	4	3.59642577	$0.75942244868 \cdot 10^{-1}$
		7.0858100059	$0.36117586799 \cdot 10^{-2}$
		12.64080084423	$0.23369972386 \cdot 10^{-4}$

Tabela 4: Parâmetros da Quadratura de Gauss-Laguerre.

Decompondo os polinômios p_n e q_n , definidos em (13)-(14) em termos dos polinômios de Laguere, escrevemos

$$p_n(x) = \sum_{k=0}^{n+1} b_k L_k(x)$$
(37)
$$q_n(x) = \sum_{j=0}^n c_j L_j(x).$$
(38)

Dessa forma, analogamente ao desenvolvimento na seção 2.2, usamos a propriedade de ortogonalidade dada em (36) para obter $p_n(x) = b_{n+1}L_{n+1}(x)$ e que por sua vez implica que as abscissas x_0, x_1, \ldots, x_n sejam as n + 1 raízes de $L_{n+1}(x)$, o polinômio de Laguerre de grau n+1. Também implica que a correspondente fórmula de quadratura será exata para polinômios de grau menor ou igual a (2n + 1).

Pode-se mostrar que as raízes de $L_{n+1}(x)$ e os pesos w_k , k = 0, 1, ..., n para esta quadratura são dadas conforme a tabela 4.

Dessa forma, a fórmula de quadratura de Gauss-Laguerre para n+1 pontos pode ser escrita

$$\int_0^\infty f(x)e^{-x}dx \approx \sum_{k=0}^n w_k f(x_k) \tag{39}$$

onde $x_0, x_1, x_2, \ldots, x_n$ são definidos pela tabela 4.

Exemplo 2.11 : Avaliar numericamente

$$\int_e^\infty \frac{dx}{1+x^{5/2}}$$

usando quadratura de Gauss-Laguerre com 4 pontos.

A mudança de variável
$$u = x - e$$
, $du = dx$ permite escrevermos

$$\int_{e}^{\infty} \frac{dx}{1+x^{5/2}} = \int_{0}^{\infty} \frac{du}{1+(u+e)^{5/2}} = \int_{0}^{\infty} g(u)e^{-u}du$$
onde $g(u) = \frac{e^{u}}{1+(u+e)^{5/2}}$.
A sequência de comandos em *Scilab*
 $-->$ function $y = g(u)$
 $--> y = \exp(u)/(1 + (u+\exp(1))\wedge(2.5));$ endfunction
 $--> u0 = 0.322547689619;$ w0 = 0.603154104342;
 $--> u1 = 1.745761101158;$ w1 = 0.357418692438;
 $--> u2 = 4.536620296921;$ w2 = 0.388879085150*10 \wedge (-1);
 $--> u3 = 9.395070912301;$ w3 = 0.539294705561*10 \wedge (-3);
 $--> I = w0*g(u0) + w1*g(u1) + w2*g(u2) + w3*g(u3)$
produz a aproximação $I = 0.1342564.$

Quadratura de Gauss-Hermite

Apresentamos os polinômios de Hermite como sendo soluções não-singulares da equação diferencial $xy^{\prime\prime}-2xy^\prime+2ny=0$.

Polinômios de Hermite, que satisfazem a relação recursiva

$$H_0(x) = 1 H_{n+1}(x) = 2xH_n(x) - H'_n(x), \quad n \ge 0,$$
(40)

têm a propriedade de ser ortogonais no intervalo $(-\infty,\infty)$, com peso $w(x) = e^{-x^2}$, isto é,

$$\int_{-\infty}^{\infty} H_n(x) H_j(x) e^{-x^2} dx = \begin{cases} 0, & n \neq j \\ \sqrt{\pi} \ n! \ 2^n, & n = j \end{cases}$$
(41)

Decompondo os polinômios p_n e q_n , definidos em (13)-(14) em termos dos polinômios de Hermite, escrevemos

$$p_n(x) = \sum_{k=0}^{n+1} b_k H_k(x)$$
(42)

$$q_n(x) = \sum_{j=0}^{n} c_j H_j(x).$$
(43)

	n	x_k	w_k
	1	-0.7071067811	0.8862269255
	T	0.7071067811	0.8862269255
		-1.22447448714	0.2954089752
	2	0.00000000000	1.1816359006
		1.22447448714	0.2954089752
		-1.6506801239	0.0813128354
	9	-0.5246476233	0.8049140900
	3	0.5246476233	0.8049140900
		1.6506801239	0.0813128354
		-2.021828705	0.0199532421
		-0.9585724646	0.3936193232
	4	0	0.9453087205
		0.9585724646	0.3936193232
		2.021828705	0.0199532421

Tabela 5: Parâmetros da Quadratura de Gauss-Hermite.

Dessa forma, analogamente ao desenvolvimento na seção 2.2, usamos a propriedade de ortogonalidade dada em (41) para obter $p_n(x) = b_{n+1}H_{n+1}(x)$ e que por sua vez implica que as abscissas x_0, x_1, \ldots, x_n sejam as n + 1 raízes de $H_{n+1}(x)$, o polinômio de Hermite de grau n + 1. Também implica que a correspondente fórmula de quadratura será exata para polinômios de grau menor ou igual a (2n + 1).

Pode-se mostrar que as raízes de $H_{n+1}(x)$ e os pesos w_k , k = 0, 1, ..., n para esta quadratura são dadas conforme a tabela 5.

Dessa forma, a fórmula de quadratura de Gauss-Hermite para n+1 pontos pode ser escrita

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx \approx \sum_{k=0}^{n} w_k f(x_k)$$
(44)

onde $x_0, x_1, x_2, \ldots, x_n$ são definidos pela tabela 5.

Exemplo 2.12 : Avaliar numericamente

$$\int_{infty}^{\infty} \frac{e^{-|x|} dx}{1+x^3}$$

usando quadratura de Gauss-Hermite com 4 pontos.

Não há necessidade de mudança de variável. Temos

$$\int_{-\infty}^{\infty} \frac{e^{-|x|} dx}{1+x^3} = \int_{-\infty}^{\infty} g(x) e^{-x^2} dx$$

onde $g(x) = \frac{e^{x^2}e^{-|x|}}{1+x^3}$. A sequência de comandos em *Scilab* --> function y = g(u) --> y = exp(u*u - abs(u))/(1 + u*u*u); endfunction --> u0=-1.6506801239; w0 = 0.0813128354; --> u1=-0.5246476233; w1=0.8049140900; --> u2= 0.5246476233; w2= 0.8049140900; --> u3=1.6506801239; w3=0.0813128354; --> I = w0*g(u0) + w1*g(u1) + w2*g(u2) + w3*g(u3) produz a aproximação I = 1.2564603.

Quadratura de integrandos com singularidade

Ao empregarmos quadratura gaussiana de qualquer tipo e ordem, nenhum dos nós x_0, x_1, \ldots, x_n coincide com qualquer dos extremos x = a ou x = b.

Estratégias de quadratura gaussiana (que pela razão acima é classificada como uma estratégia de quadratura *aberta*) será muito útil no cálculo numérico de integrais definidas de funções f(x) que não estão definidas em x = a ou x = b, mas possuem integral no intervalo [a, b]. Os próximos exemplos mostram situações como essas.

Exemplo 2.13 Encontre uma aproximação numérica para a integral mal comportada

$$I = \int_0^2 \frac{e^x}{\sqrt{x(2-x)}} dx$$

usando quadratura de Gauss-TChebyshev e 6 pontos.

Aplicando a quadratura de Gauss-TChebyshev, fazemos a mudança de variável u = x - 1, du = dx, que implica

$$I = \int_{-1}^{1} \frac{e^{u+1}}{\sqrt{(u+1)(1-u)}} du = \int_{-1}^{1} \frac{g(u)}{\sqrt{1-u^2}} dx$$

onde

$$g(u) = \frac{\sqrt{1 - u^2}e^{u+1}}{\sqrt{(u+1)(1-u)}}$$

A sequência de comandos em *Scilab* --> n = 5; wk = % pi/(n+1); --> function y = g(u) $--> y = sqrt(1-u^*u)^*exp(u+1)/sqrt((u+1)^*(1-u));endfunction$ $--> u0 = cos(1^*\% pi/(2^*(n+1))); u1 = cos(3^*\% pi/(2^*(n+1)));$ $--> u2 = cos(5^*\% pi/(2^*(n+1))); u3 = cos(7^*\% pi/(2^*(n+1)));$ $--> u4 = cos(9^*\% pi/(2^*(n+1))); u5 = cos(11^*\% pi/(2^*(n+1)));$ $--> I = wk^*(g(u0) + g(u1) + g(u2) + g(u3) + g(u4) + g(u5))$ produz a aproximação I = 10.811866.

Exemplo 2.14 : Aproxime numericamente a integral mal comportada

$$I = \int_{-\pi/4}^{\pi/4} \frac{\tan(x)}{e^x \sqrt[3]{x}} dx$$

usando quadratura de Gauss-Legendre e 4 pontos.

Definimos dois sub-intervalos de integração, separados pelo ponto de singularidade x = 0:

$$I = \int_{-\pi/4}^{\pi/4} \frac{\tan(x)}{e^x \sqrt[3]{x}} dx = \int_{-\pi/4}^{0} \frac{\tan(x)}{e^x \sqrt[3]{x}} dx + \int_{0}^{\pi/4} \frac{\tan(x)}{e^x \sqrt[3]{x}} dx$$

e assim estão definidas duas quantidades

$$I_{1} = \int_{-\pi/4}^{0} \frac{\tan(x)}{e^{x} \sqrt[3]{x}} dx$$
$$I_{2} = \int_{0}^{\pi/4} \frac{\tan(x)}{e^{x} \sqrt[3]{x}} dx$$

a serem calculadas. Para a primeira integral, a mudança de variável proposta é $u = \alpha x + \beta$, onde

$$\begin{cases} -1 = \alpha(-\pi/4) + \beta \\ 1 = \alpha(0) + \beta \end{cases} \Rightarrow \alpha = \frac{8}{\pi}, \beta = 1 \end{cases}$$

e assim
$$x = \frac{\pi(u-1)}{8}, dx = \pi du/8$$
, o que implica
 $I_1 = \int_{-\pi/4}^0 \frac{\tan(x)}{e^x \sqrt[3]{x}} dx = \int_{-1}^1 f\left(\frac{\pi(u-1)}{8}\right) \frac{\pi du}{8} \Rightarrow I_1 = \int_{-1}^1 g(u) du$
onde $g(u) = \frac{\pi f\left(\frac{\pi(u-1)}{8}\right)}{8}.$

Para a segunda integral, a mudança de variável proposta é $u = \alpha x + \beta$, onde

$$\left\{ \begin{array}{l} -1=\alpha(0)+\beta\\ 1=\alpha(\pi/4)+\beta \end{array} \Rightarrow \alpha=\frac{8}{\pi},\beta=-1 \end{array} \right.$$

e assim $x = \frac{\pi(u+1)}{8}, dx = \pi du/8$, o que implica

$$I_2 = \int_0^{\pi/4} \frac{\tan(x)}{e^x \sqrt[3]{x}} \, dx = \int_{-1}^1 f\left(\frac{\pi(u+1)}{8}\right) \frac{\pi du}{8} \Rightarrow I_2 = \int_{-1}^1 p(u) du$$

onde
$$p(u) = \frac{\pi f\left(\frac{\pi(u+1)}{8}\right)}{8}$$

A sequência de comandos em Scilab

$$-->$$
 function $u = cbrt(x)$
 $--> u = sign(x)*abs(x)\wedge(1/3);$ endfunction

$$-->$$
 function $y = f(x)$

--> y = tan(x)/(exp(x)*cbrt(x)); endfunction

$$\begin{array}{l} --> \text{ function } \mathbf{y} = \mathbf{g}(\mathbf{u}) \\ --> \mathbf{y} = \% \mathbf{pi}^* \mathbf{f}(\ \% \mathbf{pi}^* (\mathbf{u} - 1)/8 \)/8; \text{ endfunction} \\ --> \text{ function } \mathbf{y} = \mathbf{p}(\mathbf{u}) \\ --> \mathbf{y} = \% \mathbf{pi}^* \mathbf{f}(\ \% \mathbf{pi}^* (\mathbf{u} + 1)/8 \)/8; \text{ endfunction} \\ --> \mathbf{u0} = -\operatorname{sqrt}(3/7 + (6/7)^* \operatorname{sqrt}(2/15)); \ \mathbf{w0} = 1/2 \ -(1/18)^* \operatorname{sqrt}(15/2); \\ --> \mathbf{u1} = -\operatorname{sqrt}(3/7 - (6/7)^* \operatorname{sqrt}(2/15)); \ \mathbf{w1} = 1/2 \ +(1/18)^* \operatorname{sqrt}(15/2); \end{array}$$

$$\begin{array}{l} --> \mathrm{u2} = \mathrm{sqrt}(3/7 - (6/7)^* \mathrm{sqrt}(2/15)); \ \mathrm{w2} = 1/2 + (1/18)^* \mathrm{sqrt}(15/2); \\ --> \mathrm{u3} = \mathrm{sqrt}(3/7 + (6/7)^* \mathrm{sqrt}(2/15)); \ \mathrm{w3} = 1/2 - (1/18)^* \mathrm{sqrt}(15/2); \\ --> \mathrm{I1} = \mathrm{w0}^* \mathrm{g}(\mathrm{u0}) + \mathrm{w1}^* \mathrm{g}(\mathrm{u1}) + \mathrm{w2}^* \mathrm{g}(\mathrm{u2}) + \mathrm{w3}^* \mathrm{g}(\mathrm{u3}) \\ --> \mathrm{I2} = \mathrm{w0}^* \mathrm{p}(\mathrm{u0}) + \mathrm{w1}^* \mathrm{p}(\mathrm{u1}) + \mathrm{w2}^* \mathrm{p}(\mathrm{u2}) + \mathrm{w3}^* \mathrm{p}(\mathrm{u3}) \end{array}$$

produz as aproximações I1 = 0.7529783, I2 = 0.2751271 e assim I = 1.0281055.

3 Métodos de passo simples e múltiplo; explícitos e implícitos.

Exemplo 3.1 : Solução numérica de problemas iniciais ordinários

Consideremos o problema de valor inicial

$$\begin{cases} dx/dt - x(x-4) = 0 , x \in (0,4) \\ x(0) = 1/10 \end{cases}$$

A derivada primeira será aproximada pelas fórmulas em diferenças finitas centrais:

$$d_1 = \frac{x(t+h) - x(t-h)}{2h}$$
, $d_2 = \frac{x(t+h) - x(t)}{h}$

que já mostramos serem consistentes e possuirem erro de truncamento de segunda e Assim, primeira ordens, respectivamente.

O intervalo [0,1] será discretizado por $0 = t_0 < t_1 < \ldots < t_N = 1$ onde N é um inteiro fixo e $t_i = i \Delta t, i = 0, 1, 2, \ldots, N$, onde $\Delta t = 5/N$. Definimos $x_i = x(t_i), i = 0, 1, 2, \ldots, N$.

Aplicando a fórmula da approximação d_1 :

$$\frac{x_{i+1} - x_{i-1}}{2\Delta t} - x_i(x_i - 4) = 0 , \ i > 0$$
$$\frac{x_1 - x_0}{\Delta t} - x_0(x_0 - 4) = 0$$
$$x_0 = 1/10$$

e temos então o esquema numérico:

$$\begin{cases} x_0 = 1/10 , \ x_1 = x_0 + \triangle t x_0 (x_0 - 4) \\ x_{i+1} = x_{i-1} + 2 \triangle t x_i (x_i - 4) , \ i > 0 \end{cases}$$
(E1)

também chamado **esquema central**.

Aplicando a fórmula da approximação d_2 :

$$\frac{x_{i+1} - x_i}{\Delta t} - x_i(x_i - 4) = 0 , \ i \ge 0$$
$$x_0 = 1/10$$

e temos então o esquema numérico:

$$\begin{cases} x_0 = 1/10 \\ x_{i+1} = x_i + \Delta t x_i (x_i - 4) , \ i \ge 0 \end{cases}$$
(E2)

também chamado **esquema de Euler**.

Definição 3.1 Um método (esquema) numérico é **consistente** se o correspondente erro de truncamento tende a zero quando o tamanho do passo tende a zero.

Os dois esquemas propostos são consistentes uma vez que as respectivas aproximações usadas são consistentes.

Manipulando nosso problema de valor inicial analiticamente:

$$dx/dt = x(x-4) \Rightarrow \int_{x_0}^x \frac{du}{u(u-4)} = \int_0^t ds$$

e então

$$\frac{1}{4}\ln\left|\frac{x-4}{x}\right| - \frac{1}{4}\ln\left|\frac{x_0-4}{x_0}\right| = t.$$

$$\frac{(x-4)x_0}{x(x_0-4)} = e^{4t} \Rightarrow x(t) = \frac{4x_0}{x_0 + (4-x_0)e^{4t}}$$

e temos uma expressão analítica para a solução x(t).

A figura abaixo mostra o resultado da solução numérica em Matlab.

Exemplo 3.2 : encontrar solução numérica para o PVI

$$\begin{cases} \frac{dy}{dt} = \frac{\cos(t)}{t+y^2}\\ y(1) = 1/2 \end{cases}$$

no intervalo [1, 10], usando o método de Euler e $\Delta t = 0.1$.

O esquema numérico

$$\begin{cases} \frac{y_{i+1} - y_i}{\triangle t} = \frac{\cos(t_i)}{t_i + y_i^2}, & i = 0, 1, 2, \dots, n-1\\ y_0 = 0.5 \end{cases}$$

Figura 1: Solução numérica do exemplo 3.2 via Método de Euler.

é proposto. Dessa forma, estabelecemos a recursão

$$\begin{cases} y_0 = 0.5\\ y_{i+1} = y_i + \frac{(\Delta t)\cos(t_i)}{t_i + y_i^2}, \quad i = 0, 1, 2, \dots, n-1 \end{cases}$$

A sequência de comandos em *Scilab* --> h=0.1; n = (10-1)/h; t=[1:h:10]'; --> y = 0*t; y(1)=0.5; // inicializacao // --> for i=1:n --> ti= 1 + (i-1)*h; yi = y(i); --> y(i+1)=yi + h*cos(ti)/(ti + yi*yi); --> end --> [t y] --> plot2d(t,y,-1)produzem a Figura 1.

Exemplo 3.3 : Solução numérica da equação de difusão

Considere o problema de condições de contorno

$$\begin{array}{rl} v_t = & \nu v_{xx} \ , \ x \in (0,1) \ , \ t > 0 \\ v(x,0) = & f(x) \ , \ x \in [0,1] \\ v(0,t) = & a(t) \ , \ v(1,t) = b(t), t \ge 0 \end{array}$$

onde f(0) = a(0) e f(1) = b(0). Tipicamente esse problema modela a condução unidimensional de calor em uma barra limitada representada pelo segmento [0, 1]. A temperatura da barra é controlada nos extremos x = 0 e x = 1 por meio de duas funções a(t) e b(t). A temperatura inicial (instante t = 0) é dada por uma função f(x) e o parâmetro ν é chamado **coeficiente de condutividade térmica**.

A discretização a ser adotada é: $v_k^n = v(x_k, t_n)$, onde $t_n = n \Delta t$, $n = 0, 1, 2, \ldots, N$ e $x_k = k \cdot \Delta x$, $k = 0, 1, 2, \ldots, K$, onde $\Delta t > 0$ e $\Delta x = 1/K$.

A derivada parcial v_t será aproximada pela diferença finita:

$$\frac{v_k^{n+1} - v_k^n}{\triangle t}$$

que verifica

$$\frac{v_k^{n+1} - v_k^n}{\triangle t} = \frac{\partial v}{\partial t}(x_k, t_n) + \frac{\triangle t}{2} \frac{\partial^2 v(x_k, \eta_1)}{\partial t^2}$$

Por outro lado, derivada parcial v_{xx} será aproximada pela diferença central:

$$\frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\triangle x)^2}$$

que verifica

$$\frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\triangle x)^2} = \frac{\partial^2 v(x_k, t_n)}{\partial x^2} + \frac{(\triangle x)^2}{4!} \left(\frac{\partial^4 v(\xi_1, t_n)}{\partial x^4} + \frac{\partial^4 v(\xi_2, t_n)}{\partial x^4} \right) \,.$$

O erro de truncamento de nosso método é

$$\tau_{k}^{n} = v_{t}(x_{k}, t_{n}) - \nu v_{xx}(x_{k}, t_{n}) = \frac{v_{k}^{n+1} - v_{k}^{n}}{\Delta t} - \frac{\nu}{(\Delta x)^{2}} \left(v_{k+1}^{n} - 2v_{k}^{n} + v_{k-1}^{n} \right) - \frac{\Delta t}{2} \frac{\partial^{2} v}{\partial t^{2}}(x_{k}, \eta_{1}) + \frac{\nu(\Delta x)^{2}}{4!} \left(\frac{\partial^{4} v(\xi_{1}, t_{n})}{\partial x^{4}} + \frac{\partial^{4} v(\xi_{2}, t_{n})}{\partial x^{4}} \right)$$

e então, se as derivadas parciais acima forem limitadas,

$$\tau_k^n = e_k^n + O\left(\triangle t, (\triangle x)^2\right)$$

onde e_k^n é um erro de arredondamento a ser desprezado. Dessa forma, o erro de truncamento é de primeira ordem no tempo e segunda ordem no espaço. Nosso problema discretizado é:

$$\begin{array}{l} \frac{v_k^{n+1} - v_k^n}{\bigtriangleup t} = \nu \cdot \frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\bigtriangleup x)^2} &, k = 1, 2, \dots, K \ , \ n = 0, 1, 2, \dots \\ v_k^0 = f(k \bigtriangleup x) &, k = 0, 1, 2, \dots, K \\ v_0^n = a(n \bigtriangleup t) \ , \ v_K^n = b(n \bigtriangleup t) &, n = 0, 1, 2, \dots \end{array}$$

e assim temos o esquema

$$\begin{array}{c} v_k^0 = f(k \triangle x) &, k = 1, 2, \dots, K-1 \\ v_0^n = a(n \triangle t) \;, \; v_K^n = b(n \triangle t) &, n = 0, 1, 2, \dots \\ v_k^{n+1} = r v_{k+1}^n + (1-2r) v_k^n + r v_{k-1}^n &, k = 1, 2, \dots, K \;, \; n = 0, 1, 2, \dots \end{array}$$

onde $r = \nu \Delta t / (\Delta x)^2$.

A solução numérica em Matlab, para N = K = 15, $\Delta x = \Delta t = 0.0625$, $f(x) = 3sen(2\pi x)$ e a(t) = b(t) = 0, é mostrada abaixo:

Exemplo 3.4 : O esquema Leapfrog para a equação de difusão

Para a solução numérica da equação de difusão , agora aproximaremos a derivada parcial v_t pela diferença finita central:

$$\frac{v_k^{n+1} - v_k^{n-1}}{2\triangle t}$$

que verifica

$$\frac{v_k^{n+1} - v_k^{n-1}}{2\triangle t} = \frac{\partial v}{\partial t}(x_k, t_n) + \frac{(\triangle t)^2}{3} \frac{\partial^3 v(x_k, \eta_1)}{\partial t^3}$$

Entretanto, derivada parcial v_{xx} continuará aproximada pela diferença central:

$$\frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\triangle x)^2}$$

que verifica

$$\frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\triangle x)^2} = \frac{\partial^2 v(x_k, t_n)}{\partial x^2} + \frac{(\triangle x)^2}{4!} \left(\frac{\partial^4 v(\xi_1, t_n)}{\partial x^4} + \frac{\partial^4 v(\xi_2, t_n)}{\partial x^4}\right)$$

O erro de truncamento desse método é

$$\tau_k^n = v_t(x_k, t_n) - \nu v_{xx}(x_k, t_n) = \frac{v_k^{n+1} - v_k^{n-1}}{2\Delta t} - \frac{\nu}{(\Delta x)^2} \left(v_{k+1}^n - 2v_k^n + v_{k-1}^n \right) - \frac{(\Delta t)^2}{3} \frac{\partial^3 v}{\partial t^3}(x_k, \eta_1) + \frac{\nu(\Delta x)^2}{4!} \left(\frac{\partial^4 v(\xi_1, t_n)}{\partial x^4} + \frac{\partial^4 v(\xi_2, t_n)}{\partial x^4} \right)$$

e então, se as derivadas parciais acima forem limitadas,

$$\tau_k^n = e_k^n + O\left((\triangle t)^2, (\triangle x)^2\right)$$

onde e_k^n é um erro de arredondamento a ser desprezado. Dessa forma, o erro de truncamento é de segunda ordem no tempo e no espaço.

Nosso método é agora explícito de passo múltiplo m = 2 (3 estágios).

Uma dificuldade com esquemas de passo múltiplo é que eles normalmente requerem um número adicional de valores iniciais ou então devem ser inicializados por esquemas mais simples.

No nosso exemplo, os valores no instante correspondendo a n = 1 não podem ser calculados usado a aproximação central para v_t , uma vez que precisaríamos de dados correspondendo a n = -1.

Nestes casos, os dois remédios mais usados são :

- valores fantasmas correspondendo a n = -1 são inseridos obedecendo algum critério traduzindo bom senso físico do problema;
- valores correspondendo a n = 1 são calculados usando a aproximação clássica de primeira ordem para v_t .

Adotando a segunda estratégia acima, nosso problema discretizado é:

$$\begin{aligned} \frac{v_k^1 - v_k^0}{\Delta t} &= \nu \cdot \frac{v_{k+1}^0 - 2v_k^0 + v_{k-1}^0}{(\Delta x)^2} \quad , k = 1, 2, \dots, K \\ \frac{v_k^{n+1} - v_k^{n-1}}{2\Delta t} &= \nu \cdot \frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\Delta x)^2} \quad , k = 1, 2, \dots, K \quad , n = 1, 2, \dots \\ v_k^0 &= f(k\Delta x) \quad , k = 0, 1, 2, \dots, K \\ v_0^n &= a(n\Delta t) \quad , v_K^n = b(n\Delta t) \quad , n = 0, 1, 2, \dots \end{aligned}$$

e assim temos o esquema numérico (Leapfrog)

$$\begin{array}{cc} v_k^0 = f(k \triangle x) &, k = 1, 2, \ldots, K-1 \\ v_0^n = a(n \triangle t) \,, \, v_K^n = b(n \triangle t) &, n = 0, 1, 2, \ldots \\ v_k^1 = r v_{k+1}^0 + (1-2r) v_k^0 + r v_{k-1}^0 &, k = 1, 2, \ldots, K \,, \, n = 0, 1, 2, \ldots \\ v_k^{n+1} = v_k^{n-1} + 2r \left(v_{k+1}^n - 2 v_k^n + v_{k-1}^n \right) &, k = 1, 2, \ldots, K \,, \, n = 0, 1, 2, \ldots \end{array}$$

onde novamente $r = \nu \Delta t / (\Delta x)^2$.

Exemplo 3.5 : Escolha inteligente dos parâmetros $\triangle t \in \triangle x$.

Ainda no contexto do problem de difusão , analisaremos as fórmulas de aproximação das quantidades v_t e v_{xx} usadas no Exemplo 3.3 com mais detalhe:

$$\frac{v_k^{n+1} - v_k^n}{\triangle t} = \frac{\partial v}{\partial t}(x_k, t_n) + \frac{\triangle t}{2} \frac{\partial^2 v(x_k, t_n)}{\partial t^2} + O\left((\triangle t)^2\right)$$

ao passo que

$$\frac{v_{k+1}^n - 2v_k^n + v_{k-1}^n}{(\triangle x)^2} = \frac{\partial^2 v(x_k, t_n)}{\partial x^2} + \frac{(\triangle x)^2}{12} \frac{\partial^4 v(x_k, t_n)}{\partial x^4} + O\left((\triangle x)^4\right)$$

Dessa forma, o erro de truncamento do esquema do Exemplo 3.3 é

$$\tau_{k}^{n} = v_{t}(x_{k}, t_{n}) - \nu v_{xx}(x_{k}, t_{n}) = \frac{v_{k}^{n+1} - v_{k}^{n}}{\Delta t} - \frac{\nu}{(\Delta x)^{2}} \left(v_{k+1}^{n} - 2v_{k}^{n} + v_{k-1}^{n} \right) + \frac{\Delta t}{2} \frac{\partial^{2} v}{\partial t^{2}}(x_{k}, t_{n}) + \frac{\nu(\Delta x)^{2}}{12} \frac{\partial^{4} v(x_{k}, t_{n})}{\partial t^{4}} + O\left((\Delta t)^{2}, (\Delta x)^{4}\right)$$

e assim, desprezando erros de arredondamento,

$$\tau_k^n = -\frac{\Delta t}{2} \frac{\partial^2 v}{\partial t^2}(x_k, t_n) + \frac{\nu(\Delta x)^2}{12} \frac{\partial^4 v(x_k, t_n)}{\partial t^4} + O\left((\Delta t)^2, (\Delta x)^4\right)$$

Entretanto, se assumirmos que $v_t(x,t)$ e $v_{xx}(x,t)$ são funções contínuas, então

$$\frac{\partial^2 v(x_k, t_n)}{\partial t^2} = \frac{\partial}{\partial t} \left(\nu \frac{\partial^2 v(x_k, t_n)}{\partial x^2} \right) = \nu \frac{\partial^2}{\partial x^2} \left(\frac{\partial v(x_k, t_n)}{\partial t} \right)$$

e assim

$$\frac{\partial^2 v(x_k, t_n)}{\partial t^2} = \nu^2 \frac{\partial^4 v(x_k, t_n)}{\partial x^4}.$$

Dessa forma

$$\tau_k^n = \frac{\nu}{2} \left(\frac{(\triangle x)^2}{6} - \nu \triangle t \right) \frac{\partial^4 v(x_k, t_n)}{\partial x^4} + O\left((\triangle t)^2, (\triangle x)^4 \right).$$

Conclusão : se tomarmos $\triangle t$, $\triangle x$ tais que

$$\frac{\triangle t}{(\triangle x)^2} = \frac{1}{6\nu}$$

e se a quarta derivada espacial for limitada, então o erro de truncamento do esquema do Exemplo 3.3 é de segunda ordem no tempo e quarta ordem no espaço.

Introdução 3.1 : Tratamento numérico de condições de contorno; condição de Neumann

No problema de difusão visto anteriormente, ressaltamos suas condições de contorno

$$v(0,t) = a(t) , t \ge 0$$

 $v(1,t) = b(t) , t \ge 0.$

Essas condições de contorno são chamadas de **condições de Dirichlet**, sendo as de mais simples implementação numérica.

Muito frequentemente, para uma barra representada pelo segmento $\{x : 0 \le x \le L\}$, o problema físico nos dá condições de contorno do tipo

$$v_x(0,t) = a(t)$$

$$v_x(L,t) = b(t)$$

chamadas **condições de contorno de Neumann** e que traduzem um controle do fluxo de calor nas extremidades da barra.

Entretanto, condições de Neumann não podem ser exatamente implementadas e consequentemente satisfeitas ao computador. Se consideramos, por exemplo, a condição $v_x(0,t) = a(t)$, vemos que uma abordagem bastante natural é usarmos

$$\frac{v_1^n - v_0^n}{\triangle x} = a(n \triangle t) , \ n = 1, 2, 3, \dots$$

e então teríamos $v_0^n = v_1^n - \triangle x \ a(n \triangle t), n = 1, 2, 3, \dots$ Essa expressão ainda não permite o cálculo de v_0^n , mas permite a eliminação de v_0^n das demais equações que compõem o esquema numérico.

Problema: pode mostrar-se que o erro de truncamento da solução será também determinado pela ordem da aproximação das condições de contorno.

Dessa forma, como essa aproximação é de primeria ordem no espaço, mesmo usando aproximações mais exatas (maior ordem) na equação diferencial parcial, a solução ao problema de contorno ainda teria um erro de truncamento de primeira ordem no espaço.

Possível saída: aumentar a ordem da aproximação das condições de contorno. Assim, introduzimos os valores v_{-1}^n e usamos então a aproximação

$$\frac{v_1^n - v_{-1}^n}{2\triangle x} = a(n\triangle t), n = 1, 2, 3, \dots$$

e então $v_1^n = v_{-1}^n + 2 \triangle x \; a(n \triangle t), n = 1, 2, \ldots$ Essa expressão será usada na equação

$$\frac{v_0^{n+1}-v_0^n}{\bigtriangleup t}=\nu\frac{v_1^n-2v_0^n+v_{-1}^n}{(\bigtriangleup x)^2}$$

obtida da aproximação da equação diferencial quando k = 0. Dessa forma, temos

$$\frac{v_0^{n+1} - v_0^n}{\triangle t} = \nu \frac{v_1^n - 2v_0^n + v_1^n - 2\triangle x \ a(n\triangle t)}{(\triangle x)^2}$$
$$\implies v_0^{n+1} = v_0^n + \frac{2\nu(v_1^n - v_0^n)}{(\triangle x)^2} - 2\nu\triangle x \ a(n\triangle t)$$

e essa última equação permitirá calcular v_0^n , n = 1, 2, 3, ...

Definição 3.2 Diferenças finitas na variável espacial x serão denotadas pela (B) k = 2, 3 função $\delta(\cdot)$, da sequinte forma:

$$\begin{split} \delta_+(v_k^n) &= v_{k+1}^n - v_k^n \ , \ \delta_-(v_k^n) = v_k^n - v_{k-1}^n \\ \delta^1(v_k^n) &= v_{k+1}^n - v_{k-1}^n \ , \ \delta^2(v_k^n) = v_{k+1}^n - 2v_k^n - v_{k-1}^n \end{split}$$

Dessa forma, o **esquema de Euler** para $v_t = \nu v_{xx}$ pode ser descrito por

$$\frac{v_k^{n+1} - v_k^n}{\triangle t} = \frac{\nu}{(\triangle x)^2} \delta^2(v_k^n) \Longrightarrow v_k^{n+1} = v_k^n + \frac{\nu \triangle t}{(\triangle x)^2} \delta^2(v_k^n),$$

ao passo que o **esquema Leapfrog** para $v_t = \nu v_{xx}$ pode ser descrito por

$$\frac{v_k^{n+1} - v_k^{n-1}}{2\triangle t} = \frac{\nu\delta^2(v_k^n)}{(\triangle x)^2} \Longrightarrow v_k^{n+1} = v_k^{n-1} + 2\frac{\nu\triangle t}{(\triangle x)^2}\delta^2(v_k^n).$$

Definição 3.3 O método de **Crank-Nicolson** para $v_t = \nu v_{xx}$ é descrito por

$$\frac{v_k^{n+1} - v_k^n}{\triangle t} = \frac{\nu}{(\triangle x)^2} \frac{\delta^2(v_k^{n+1}) + \delta^2(v_k^n)}{2} \,.$$

Exemplo 3.6 : O esquema implícito de Crank-Nicolson para o problema de difusão

Dessa forma, $v_t = \nu v_{xx}$ é discretizado via:

$$v_k^{n+1} - \frac{\nu \triangle t}{2(\triangle x)^2} \delta^2 v_k^{n+1} = v_k^n + \frac{\nu \triangle t \delta^2(v_k^n)}{2(\triangle x)^2}$$

e vemos que esse esquema é **implícito** de **2 estágios**. Nosso problema discretizado é então :

$$v_k^{n+1} - \frac{r}{2}\delta^2(v_k^{n+1}) = v_k^n + \frac{r}{2}\delta^2(v_k^n) , \quad k = 1, 2, \dots, K; n = 0, 1, 2, \dots$$
$$v_k^0 = f(k\triangle x) , \quad k = 0, 1, 2, \dots, K$$
$$v_0^n = a_n = a(n\triangle t), \quad v_K^n = b_n = b(n\triangle t) , \quad n = 0, 1, 2, 3, \dots$$

A primeira equação é então considerada em três casos: (A) k = 1:

$$(1+r)v_1^{n+1} - \frac{r}{2}v_2^{n+1} = \frac{r}{2}a_n + (1-r)v_1^n + \frac{r}{2}v_2^n + \frac{r}{2}a_{n+1}$$

(B) $k = 2, 3, 4, \dots, K - 2$:

$$-\frac{r}{2}v_{k-1}^{n+1} + (1+r)v_k^{n+1} - \frac{r}{2}v_{k+1}^{n+1} = \frac{r}{2}v_{k-1}^n + (1-r)v_k^n + \frac{r}{2}v_{k+1}^n.$$

(C) k = K - 1:

$$-\frac{r}{2}v_{K-2}^{n+1} + (1+r)v_{K-1}^{n+1} = \frac{r}{2}v_{K-2}^{n} + (1-r)v_{K-1}^{n} + \frac{r}{2}b_n + \frac{r}{2}b_{n+1}$$

o que significa que temos K-1 equações nas (K-1) variáveis $v_1^{n+1}, v_2^{n+1}, \ldots, v_{K-1}^{n+1}$. Matricialmente, temos $A\mathbf{v}^{n+1} = \mathbf{z}^n$ onde

$$\mathbf{A} = \begin{bmatrix} 1+r & -r/2 & 0 & \dots & \\ -r/2 & 1+r & -r/2 & 0 & \dots & \\ 0 & -r/2 & 1+r & -r/2 & 0 & \dots & \\ 0 & r/2 & \dots & \dots & \dots & \\ 0 & \dots & 1+r & -r/2 & \\ \dots & 0 & \dots & 1+r & -r/2 & \\ \dots & 0 & \dots & 1+r & -r/2 & \\ \dots & 0 & \dots & 1+r & -r/2 & \\ \dots & 0 & \dots & 1+r & -r/2 & \\ \dots & \dots & \dots & \dots & \\ \frac{r}{2} v_{k-1}^n + (1-r) v_k^n + \frac{r}{2} v_{k+1}^n & \\ \dots & \dots & \\ \frac{r}{2} v_{K-2}^n + (1-r) v_{K-1}^n + \frac{r}{2} b_n + \frac{r}{2} b_{n+1} \end{bmatrix}$$

A matriz A acima é uma matriz constante (não muda de um passo para outro) esparsa do tipo tridiagonal. Dessa forma, seu armazenamento, fatorização e a solução de $Av^{n+1} = z^n$ podem ser feitos usando métodos especializados para esse tipo de estrutura.

Definição 3.4 Nos chamados métodos (esquemas) numéricos de **passo múltiplo**, os valores nos m instantes anteriores n, n - 1, n - 2, n - m + 1 são usados na determinação dos valores do (n + 1)-ésimo instante, onde $m \in \mathbb{N}, m > 1$. Neste caso, dizemos que

• o método tem m passos, ou então que

• o método tem m + 1 estágios.

Se acima tivermos m = 1, então temos os chamados métodos (esquemas) numéricos de **passo simples** ou 2 estágios.

Definição 3.5 Um método (esquema) numérico é dito **explícito** se os valores no (n + 1)-ésimo instante são determinados explicitamente. Caso contrário, o método (esquema) numérico é dito ser **implícito**.

Um exemplo de esquema numérico explícito de passo simples é o apresentado no Exemplo 5, onde os valores no (n + 1)-ésimo instante são diretamente determinados apenas pelos valores do *n*-ésimo instante.

Para a equação diferencial ordinária y' = f(t, y), um esquema de m passos é

$$\frac{y_{i+1} + \alpha_1 y_i + \alpha_2 y_{i-1} + \ldots + \alpha_m y_{i+1-m}}{h} =$$

$$\beta_0 f(t_{i+1}, y_{i+1}) + \ldots + \beta_m f(t_{i+1-m}, y_{i+1-m})$$
(45)

3.1 Métodos Implícitos ou Corretores de Adams

Os esquemas implícitos de Adams-Moulton (Corretores) são uma família de esquemas de m passos onde

$$\alpha_1 = -1 , \ \alpha_2 = \alpha_3 = \ldots = \alpha_m = 0$$

e os coeficientes β_0, \ldots, β_m são determinados de maneira a maximizar a ordem do erro de truncamento.

A tabela 6 mostra os valores desses coeficientes para m = 1, 2, 3.

Tab	ela 6:	Parâmetros	para	\mathbf{OS}	esquemas	С	Corretores	de	Ad	lams
-----	--------	------------	------	---------------	----------	---	------------	----	----	------

m	β_0	β_1	β_2	β_3	T
1	1/2	1/2			$O(h^2)$
2	5/12	8/12	-1/12		$O(h^3)$
3	9/24	19/24	-5/24	1/24	$O(h^4)$

Aqui o parâmetro de discretização é denotado por h. Por exemplo, o esquema corretor de 2 passos de Adams é

$$\frac{y_{i+1} - y_i}{h} = \beta_0 f(t_{i+1}, y_{i+1}) + \beta_1 f(t_i, y_i) + \beta_2 f(t_{i-1}, y_{i-1})$$

Neste caso, pode-se mostrar que o erro de truncamento é dado por:

$$e_{i,h} = \frac{y_{i+1} - y_i}{h} - \beta_0 f(t_{i+1}, y_{i+1}) - \beta_1 f(t_i, y_i) - \beta_2 f(t_{i-1}, y_{i-1}) = 1 - \beta_0 - \beta_1 - \beta_2) y'(t_i) + (1 - 2\beta_0 + 2\beta_2) \frac{h y''(t_i)}{2} + (1 - 3\beta_0 - 3\beta_2) \frac{h^2 y^{(3)}(t_i)}{6} + (1 - 4\beta_0 + 4\beta_2) \frac{h^3 y^{(4)}(t_i)}{24} + O(h^4)$$

Dessa forma, as parâmetros $\beta_0, \beta_1 \in \beta_2$ devem satisfazer

$$\begin{array}{ll} 1 - \beta_0 - \beta_1 - \beta_2 &= 0\\ 1 - 2\beta_0 + 2\beta_2 &= 0\\ 1 - 3\beta_0 - 3\beta_2 &= 0 \end{array}$$

o que resulta

$$\beta_0 = \frac{5}{12} , \ \beta_1 = \frac{8}{12} , \ \beta_2 = \frac{-1}{12} .$$

Como $1 - 4\beta_0 + 4\beta_2 \neq 0$, o erro de truncamento é de ordem 3.

Dificuldade com esquemas de passo múltiplo: eles normalmente requerem um número adicional de valores para sua inicialização.

Exemplo 3.7 : encontrar solução numérica para o PVI

$$\begin{cases} \frac{dy}{dt} = \frac{y}{1+t^p}\\ y(0) = 1 \end{cases}$$

no intervalo [0,20], para p=1.5,usando o método Corretor de Adams de ordem 2 eh=0.1.

Temos
$$f(t, y) = y/(1 + t^{3/2})$$
, e assim
$$\begin{cases} \frac{y_{i+1} - y_i}{h} = \frac{1}{2} \frac{y_i}{1 + t_i^{3/2}} + \frac{1}{2} \frac{y_{i+1}}{1 + t_{i+1}^{3/2}}, i = 0, 1, 2, \dots, n-1\\ y_0 = 1 \end{cases}$$

e re-escrevemos a primeira equação:

$$\left(1 - \frac{h}{2(1 + t_{i+1}^{3/2})}\right)y_{i+1} = \left(1 + \frac{h}{2(1 + t_i^{3/2})}\right)y_i$$

o que implica no esquema numérico

$$\begin{cases} y_0 = 1\\ y_{i+1} = \left(1 - \frac{h}{2(1 + t_{i+1}^{3/2})}\right)^{-1} \left(1 + \frac{h}{2(1 + t_i^{3/2})}\right) y_i \quad , i = 0, 1, 2, \dots, n-1 \end{cases}$$

e a sequência de comandos em *Scilab*

$$\begin{array}{l} --> h = 0.1; t = [0:h:20]'; n = 20/h; \\ --> p = 1.5; y = 0^* t; y(1) = 1; \\ --> for i = 1:n \\ --> ti = (i-1)^*h; ti1 = ti+h; \\ --> di = 1 + h/(2+2^*ti^*sqrt(ti)); ui = 1 - h/(2+2^*ti1^*sqrt(ti1)); \\ --> y(i+1) = di^*y(i)/ui; \\ --> end \\ reduce a Eirman 2 \end{array}$$

produz a Figura 2.

3.2 Métodos Explícitos ou Preditores de Adams

Os esquemas explícitos de Adams-Bashforth (Preditores) são uma família de esquemas de m passos onde

$$\alpha_1 = -1$$
, $\alpha_2 = \alpha_3 = \ldots = \alpha_m = 0$

Figura 2: Solução numérica do exemplo 3.7 via esquema corretor de ordem 2.

Tabela 7: Parâmetros para os esquemas Previsores de Adams

m	β_0	β_1	β_2	β_3	β_4	T
1	0	1				O(h)
2	0	3/2	-1/2			$O(h^2)$
3	0	23/12	-16/12	5/12		$O(h^3)$
4	0	55/24	-59/24	37/24	-9/24	$O(h^4)$

e os coeficientes β_0, \ldots, β_m são determinados de maneira a maximizar a ordem do erro de truncamento sob a restrição $\beta_0 = 0$.

A Tabela 7 mostra os valores desses coeficientes para m = 1, 2, 3, 4.

Exemplo 3.8 : encontrar solução numérica para o PVI

$$\begin{cases} \frac{dy}{dt} = \frac{\cos(t)}{t+y^2}\\ y(1) = 1/2 \end{cases}$$

no intervalo [1, 10], usando o método Previsor de ordem 3 de Adams e h = 0.1. Temos $f(t, y) = \cos(t)/(t + y^2)$, e assim

$$\begin{cases} \frac{y_{i+1} - y_i}{h} = \frac{23}{12} \frac{\cos(t_i)}{t_i + y_i^2} - \frac{16}{12} \frac{\cos(t_{i-1})}{t_{i-1} + y_{i-1}^2} + \frac{5}{12} \frac{\cos(t_{i-2})}{t_{i-2} + y_{i-2}^2}, & i = 2, \dots, n-1 \\ \frac{y_2 - y_0}{2h} = \frac{\cos(t_1)}{t_1 + y_1^2} \\ \frac{y_1 - y_0}{h} = \frac{\cos(t_0)}{t_0 + y_0^2} \\ y_0 = 1/2 \end{cases}$$

e re-escrevemos a primeira equação:

$$y_{i+1} = y_i + \frac{23h}{12} \frac{\cos(t_i)}{t_i + y_i^2} - \frac{16h}{12} \frac{\cos(t_{i-1})}{t_{i-1} + y_{i-1}^2} + \frac{5h}{12} \frac{\cos(t_{i-2})}{t_{i-2} + y_{i-2}^2}$$

o que implica no esquema numérico

$$\begin{cases} y_0 = 1/2\\ y_1 = y_0 + h\cos(t_0)/(t_0 + y_0^2)\\ y_2 = y_0 + 2h\cos(t_1)/(t_1 + y_1^2)\\ y_{i+1} = y_i + \frac{23h}{12}\frac{\cos(t_i)}{t_i + y_i^2} - \frac{16h}{12}\frac{\cos(t_{i-1})}{t_{i-1} + y_{i-1}^2} + \frac{5h}{12}\frac{\cos(t_{i-2})}{t_{i-2} + y_{i-2}^2}, \quad i = 2, \dots, n-1 \end{cases}$$

A sequência de comandos em Scilab --> h = 0.1; t=[1:h:10]';n = (10-1)/h; --> y=0*t; y(1)=0.5;--> function u=f(t,y) $u = cos(t)/(t + y^*y);$ endfunction --> $--> y(2) = y(1) + h^* f(t(1), y(1));$ --> y(3) = y(1) + 2*h*f(t(2),y(2));--> for i=3:n y(i+1) = y(i) + 23*h*f(t(i),y(i))/12 - 16*h*f(t(i-1),y(i-1))/12 +--> 5*h*f(t(i-2),y(i-2))/12;--> --> end --> plot2d(x,y,-1)produzem a Figura 3.

3.3 Métodos Preditor-corretor de Adams

Esses métodos são combinações dos métodos explícitos (preditores) e ímplicitos (corretores) de Adams.

Estratégia: primeiramente, aplicamos o esquema previsor para obter uma aproximação y^p de y_{i+1} , após, usamos y^p no lugar de y_{i+1} no lado recorrente da equação.

$$y_i \xrightarrow{P} y^p \xrightarrow{C} y_{i+1}$$

Figura 3: Solução numérica do exemplo 3.8 via esquema previsor de ordem 3.

Exemplo 3.9 : Resolver numericamente o PVI

$$\begin{cases} dy/dt = y(4-y) \\ y(0) = 1/10 \end{cases}$$

no intervalo [0, 5], usando o método Preditor-corretor de Adams de ordem 2, e ${\cal N}=20.$

Propomos o esquema numérico

$$y_0 = 0.1$$
, $y_1 = y_0 + \Delta t y_0 (4 - y_0)$

$$\begin{cases} y_p = y_i + \frac{3 \Delta t y_i (4 - y_i)}{2} - \frac{\Delta t y_{i-1} (4 - y_{i-1})}{2} \\ y_{i+1} = y_i + \frac{\Delta t y_p (4 - y_p)}{2} + \frac{\Delta t y_i (4 - y_i)}{2} \end{cases}$$

 $\begin{array}{l} \text{para } i=1,2,3,\ldots,N-1 \\ \text{A sequencia de comandos em } Scilab \\ --> \text{N} = 20; \ \text{h} = (5\text{-}0)/\text{N}; \\ --> \text{t} = [0:\text{h:}5]'; \\ --> \text{function u} = \text{f}(\text{t},\text{y}) \\ --> \text{u} = \text{y*}(4\text{-}\text{y}); \text{endfunction} \\ --> \text{y} = 0^*\text{t}; \ \text{y}(1) = 0.1; \ \text{y}(2) = \text{y}(1) + \text{h*f}(\text{t}(1), \text{y}(1)); \\ --> \text{for i} = 2:\text{N} \\ --> \quad \text{yp} = \text{y}(\text{i}) + 3^*\text{h*f}(\text{t}(\text{i}),\text{y}(\text{i}))/2 - \text{h*f}(\text{t}(\text{i-}1),\text{y}(\text{i-}1))/2; \\ \end{array}$

$$\begin{array}{ll} --> & y(i+1)=y(i) + h^*f(t(i+1),yp)/2 + h^*f(t(i),y(i))/2; \\ --> & end \\ --> & ye=4^*ones(t)./(ones(t) + 39^*exp(-4^*t)); \\ --> & [t \ y \ ye] \\ --> & plot2d([t \ t],[y \ ye],[-2 \ 1]) \end{array}$$

produz a Tabela 8 e a Figura 4, que mostra o resultado da avaliação desse esquema numérico:

Tabela 8: Aplicação do esquema Previsor-Corretor de Adams

t_i	y_i	exata	t_i	y_i	exata
0.	0.1	0.1	2.75	4.0133827	3.9973962
0.25	0.1975	0.2606322	3.	4.0036113	3.9990417
0.5	0.4834080	0.6371379	3.25	3.9993494	3.9996474
0.75	1.0775639	1.35976	3.5	3.9986079	3.9998703
1.	1.9709386	2.3333004	3.75	3.9991186	3.9999523
1.25	2.8258465	3.1676145	4.	3.9996869	3.9999824
1.5	3.4324052	3.6474009	4.25	3.9999855	3.9999935
1.75	3.7938897	3.8626317	4.5	4.0000674	3.9999976
2.	3.9667782	3.9483437	4.75	4.0000542	3.9999991
2.25	4.0231938	3.9808403	5.	4.0000238	3.9999997
2.5	4.0255656	3.9929301			

Introdução 3.2 : Métodos de Runge-Kutta para solução de EDO de primeira ordem

Estes são provavelmente os métodos de alta-ordem mais fáceis de programar. São métodos de passo simples que, ao contrário dos métodos de passo múltiplo, são autoinicializáveis e não enfrentam dificuldade ao variarmos o passo h. Por outro lado, métodos de Runge-Kutta requerem muitas avaliações da função f por passo.

• Métodos de Runge-Kutta

Esquema clássico de Runge-Kutta de quarta ordem:

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{hk_{1}}{2}\right)$$

$$k_{3} = f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{hk_{2}}{2}\right)$$

$$k_{4} = f\left(t_{n} + h, y_{n} + kk_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{h(k_{1} + 2k_{2} + 2k_{3} + k_{4})}{6}$$

Figura 4: Solução numérica do exemplo 3.9 via esquema previsor-corretor de ordem 2 de Adams.

• Método RKF45

O método de Runge-Kutta-Fehlberg para solução numérica de

$$\frac{dy}{dt} = f(t, y)$$

possui um erro de truncamento de quarta ordem, além de fornecer uma estimativa de quinta ordem desse erro de truncamento.

Novamente o parâmetro de discretização é denotado por h.

$$\begin{split} k_1 &= hf\left(t_n, y_n\right) \\ k_2 &= hf\left(t_n + \frac{h}{4}, y_n + \frac{k_1}{4}\right) \\ k_3 &= hf\left(t_n + \frac{3h}{8}, y_n + \frac{3k_1}{32} + \frac{9k_2}{32}\right) \\ k_4 &= hf\left(t_n + \frac{12h}{13}, y_n + \frac{1932k_1}{2197} - \frac{7200k_2}{2197} + \frac{7296k_3}{2197}\right) \\ k_5 &= hf\left(t_n + h, y_n + \frac{439k_1}{216} - 8k_2 + \frac{3680k_3}{513} - \frac{845k_4}{4104}\right) \\ k_6 &= hf\left(t_n + \frac{h}{2}, y_n - \frac{8k_1}{27} + 2k_2 - \frac{3544k_3}{2565} + \frac{1859k_4}{4104} - \frac{11k_5}{40}\right) \\ y_{n+1} &= y_n + \frac{25k_1}{216} + \frac{1408k_3}{2565} + \frac{2197k_4}{4104} - \frac{k_5}{5} \\ e_n &= \frac{1}{h} \left| \frac{k_1}{360} - \frac{128k_3}{4275} - \frac{2197k_4}{75240} + \frac{k_5}{50} + \frac{2k_6}{55} \right| \end{split}$$

4 Métodos de discretização parcial; o Método das Linhas

Os métodos numéricos vistos anteriormente são de **discretização total**, pois tanto as **variáveis de espaço** (x) quanto a variável temporal (t) são discretizadas.

Introdução 4.1 : Método das Linhas.

O Método das Linhas é um método de discretização parcial, onde apenas as variáveis espaçiais são discretizadas. Essa estratégia, dá origem a um sistema de equações diferenciais ordinárias na variável t. Esse sistema de equações é então resolvido usando-se métodos clássicos disponíveis na literatura.

Exemplo 4.1 : Método das Linhas para o problema de difusão

Após a discretização

$$x_k = k \triangle x$$
, $v_k(t) = v(x_k, t)$; $k = 0, 1, 2, \dots, K$

e a escolha de uma aproximação de diferenças finitas para a derivada parcial v_{xx} , a equação parcial $v_t = \nu v_{xx}$ escreve-se

$$\frac{dv_k}{dt} = f(v_k, x_k, t) \; .$$

Se a derivada parcial v_{xx} for aproximada pela diferença

$$\frac{v_{k+1}(t) - 2v_k(t) + v_{k-1}(t)}{(\triangle x)^2} = \frac{\delta^2(v_k)}{(\triangle x)^2}$$

então temos

$$f(v_k, x_k, t) = \frac{\delta^2(v_k)}{(\triangle x)^2}$$

Assim, temos os sistema de equações diferenciais ordinárias

$$\frac{d}{dt} \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_{K-2} \\ v_{K-1} \end{bmatrix} = \begin{bmatrix} \rho(v_2 - 2v_1) + \rho a(t) \\ \rho(v_3 - 2v_2 + v_1) \\ \dots \\ \rho(v_{K-1} - 2v_{K-2} + v_{K-3}) \\ \rho(-2v_{K-1} + v_{K-3}) + \rho b(t). \end{bmatrix}$$

com a condição inicial

$$v_1(0) = f(\triangle x)$$

$$v_2(0) = f(2\triangle x)$$

...

$$v_{K-1}(0) = f((K-1)\triangle x).$$

Implementação do Método das Linhas: Vários métodos clássicos para onde $f(x) = 3sen(2\pi x) e^{-2\pi x}$ on d(x) = b(x) = 0. solução de sistemas de equações y' = f(y, t) podem ser usados. Entre eles:

- Método de Euler, Trapézio
- Métodos de Adams-Moulton e Adams-Bashforth
- Métodos Preditor-Corretor de Adams
- Método de Runge-Kutta, Runge-Kutta-Fehlberg

Exemplo 4.2 : Implementação do Método das Linhas para problema de difusão.

Considere o problema de condições de contorno

$$\begin{array}{rll} v_t = & \nu v_{xx} \ , \ x \in (0,1) \ , \ t > 0 \\ v(x,0) = & f(x) \ , \ x \in [0,1] \\ v(0,t) = & a(t) \ , \ v(1,t) = b(t), t \ge 0 \end{array}$$

O Método das Linhas é então aplicado e o sistema de equações diferenciais ordinárias é resolvido usando o método preditor-corretor de segunda ordem de Adams:

$$\begin{split} y^p &= y_n + \frac{3hf(t_n,y_n)}{2} + \frac{hf(t_{n-1},y_{n-1})}{2} \\ y_{n+1} &= y_n + \frac{hf(t_{n+1},y^p)}{2} + \frac{hf(t_n,y_n)}{2} \;. \end{split}$$

A solução numérica em Matlab, para N = K = 8, $\Delta x = \Delta t = 0.125$, é mostrada abaixo

Revisão de pré-requisitos $\mathbf{5}$

Revisão de análise real e funcional 5.1

Em espaços de dimensão finita, usaremos as normas

$$\|u\|_2 = \sqrt{\sum_{k=1}^N |u_k|^2}$$
, $\|u\|_{2, \bigtriangleup x} = \sqrt{\sum_{k=1}^N |u_k|^2 \bigtriangleup x}$, $\|u\|_{\infty} = \max_{1 \le k \le N} |u_k|^2$

Em espaços de sequências infinito-dimensionais, como os espaços ℓ_p :

$$\ell_p = \left\{ u = (\dots, -u_{-1}, u_0, u_1, \dots) : \left(\sum_{k=-\infty}^{\infty} |u_k|^p \right)^{1/p} < \infty \right\}$$

com norma

$$||u||_p = \left(\sum_{k=-\infty}^{\infty} |u_k|^p\right)^{1/p}$$

e em particular, quando p = 2,

$$\ell_2 = \left\{ u = (\dots, u_{-1}, u_0, u_1, \dots) : \sum_{k=-\infty}^{\infty} |u_k|^2 < \infty \right\}$$
$$\|u\|_2 = \sqrt{\sum_{k=-\infty}^{\infty} |u_k|^2}$$

e norma-energia

$$||u||_{2, \bigtriangleup x} = \sqrt{\sum_{k=-\infty}^{\infty} |u_k|^2 \bigtriangleup x}$$

Quando $p = \infty$ temos os espaço das sequências limitadas

$$\ell_{\infty} = \left\{ u = (\dots, u_{-1}, u_0, u_1, \dots) : \sup_{-\infty \le k \le \infty} |u_k| < \infty \right\}$$

 com norma

$$||u||_{\infty} = \sup_{-\infty \le k\infty} |u_k|.$$

Além disso, no contexto de transformadas integrais usaremos o espaço de funções complexas

$$L_2(R) = \left\{ v: R \to \mathbb{C} : \int_R |v(x)|^2 dx < \infty \right\}$$

de funções de quadrado integrável a Lebesgue, e norma

$$||v||_2 = \sqrt{\int_R |v(x)|^2 dx}$$
.

Para vetores ou sequências bi-indexadas em $\mathbb{R}^{N \times N}$

$$\|\{u_{jk}\}\|_{2,\triangle x} = \sqrt{\sum_{j=1}^{N_x} \sum_{k=1}^{N_y} |u_{jk}|^2 \triangle x \triangle y}$$
$$\|\{u_{jk}\}\|_{2,\triangle x} = \sqrt{\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} |u_{jk}|^2 \triangle x \triangle y}$$

e para o espaço $L_2(R)$ bi-dimensional

$$||v||_2 = \sqrt{\int_{R \times R} |v(x, y)|^2 dx dy}$$
.

Para sequências de vetores

$$\mathbf{u} = (\dots, u_{-1}, u_0, u_1, \dots) \quad , \quad u_j \in \mathbb{R}^k \text{ ou } \mathbb{C}^k$$
$$\|\mathbf{u}\|_{2, \bigtriangleup x} = \sqrt{\sum_{j=-\infty}^{\infty} \|u_j\|_2 \bigtriangleup x}$$

.

e para funções vetoriais $v: R \to \mathbb{C}^N$:

$$\|\mathbf{v}\|_2 = \sqrt{\int_R \|v(x)\|_2^2 dx}$$

5.2 Revisão de álgebra matricial

Operadores $A: X \to X$, onde X é um espaço linear com norma $\|\cdot\|$. Exemplo: X tem dimensão finita e A é um operador linear

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \xrightarrow{A} \begin{bmatrix} x_1 - 2x_2 + x_3 \\ x_1 + x_3 \\ x_2 - x_3 \end{bmatrix}$$

com representação matricial

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

onde toleraremos o abuso de notação : A(x) = Ax. A norma de A induzida por $\|\cdot\|$ é:

$$||A|| = \sup_{||x|| \le 1} ||Ax||.$$

Lema 5.1 Se A é uma matriz $N \times N$ hermitiana $(A = A^*)$ então a norma espectral é definida por

$$\|A\|_2 = \sigma(A)$$

onde $\sigma(A)$ é o raio espectral de A, definido por

$$\sigma(A) = \max\{|\lambda| : \exists x \in \mathbb{C}^N, Ax = \lambda x\}.$$

Definição 5.1 Os valores singulares de uma matriz A são as raízes quadradas dos autovalores de $A^T A$.

Definição 5.2 Se A é uma matriz complexa qualquer então definimos

$$\|A\|_2 = \sqrt{\sigma(A^*A)}.$$

Assim, se A é uma matriz real qualquer

$$\|A\|_2 = \sqrt{\sigma(A^T A)}.$$

Dessa forma, a norma espectral de uma matriz real A é determinada pelo seu maior valor singular.

Como o cálculo dessa norma requer computação pesada, algumas alternativas podem ser consideradas.

1. Matrizes especiais. Algumas matrizes tem autovalores e autovetores conhecidos analiticamente, o que facilita bastante a análise numérica. Considere

$$T = \begin{bmatrix} b & c & \dots & \\ a & b & c & \dots \\ & \dots & \ddots & \\ & \dots & a & b \end{bmatrix}$$

de dimensão $N \times N$. Os autovalores e correspondentes autovetores são :

$$\lambda_j = b + 2c\sqrt{\frac{a}{c}}\cos\left(\frac{j\pi}{N+1}\right)$$
$$u_j(k) = 2\left(\sqrt{\frac{a}{c}}\right)^k sen\left(\frac{kj\pi}{N+1}\right) , \ k = 1, \dots, N$$

para j = 1, 2, ..., N.

2. Normas Matriciais Equivalentes. Para vetores de n componentes, uma consequência da definição das normas vetoriais $\|\cdot\|_p$ é

•
$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$$

• $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$
• $||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty}$

Uma consequência direta para estimação da norma matricial $\|A\|_2$ (norma espectral) são as fórmulas

$$\bullet \frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{n} \|A\|_{\infty}$$

•
$$||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$$

•
$$||A||_2 \le \sqrt{||A||_1 ||A||_\infty}$$

onde $||A||_F$ é a chamada **norma Frobenius** de A, definida por

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$

e que verifica $||A||_F^2 = tr(A^T A)$ (traço matricial).

6 A noção de estabilidade de um esquema numérico

Um esquema de valor inicial é estável: pequenos erros nas condições iniciais correspondem a pequenos erros na solução

Definição 6.1 Um esquema de passo simples

$$\mathbf{u}^{n+1} = Q\mathbf{u}^n \ , \ n \ge 0$$

é estável com respeito à norma $\|\cdot\|$ se existem constantes positivas $\Delta x_0 \ e \ \Delta t_0 \ e$ constantes não negativas $K \ e \ \beta$ tais que

$$\|\mathbf{u}^{n+1}\| \le Ke^{\beta t} \|\mathbf{u}^0\|, n = 0, 1, 2, \dots$$

para $0 \le t = (n+1) \triangle t$, $0 < \triangle x \le \triangle x_0$ $e \ 0 < \triangle t \le \triangle t_0$.

Lema 6.1 O esquema acima é estável com respeito à norma $\|\cdot\|$ se e somente se Considere a equação de onda unidimensional existem constantes $K \in \beta$ tais que

$$||Q^{n+1}|| \le Ke^{\beta t}, n = 0, 1, 2, \dots$$

para $0 \le t = (n+1) \triangle t$, $0 \le \triangle x \le \triangle x_0$ $e \ 0 \le \triangle t \le \triangle t_0$.

Demonstração :

 \in Supomos que $||Q^{n+1}|| \leq Ke^{\beta t}, n = 0, 1, \dots$ Então

$$u^{n+1} = Qu^n = Q^2 u^{n-1} = \ldots = Q^{n+1} u^0$$

e assim

$$||u^{n+1}|| = ||Q^{n+1}u^0|| \le ||Q^{n+1}|| ||u^0|| \le Ke^{\beta t} ||u_0||$$

e então o esquema numérico é estável na norma $\|\cdot\|$.

 \Rightarrow Supomos que o esquema numérico é estável na norma $\|\cdot\|$. Então existem constantes K e β tais que $||u^{n+1}|| \leq Ke^{\beta t} ||u^0||$, $n = 0, 1, 2, \dots$ Por definição

$$\|Q^{n+1}\| = \sup_{\|u\| \le 1} \|Q^{n+1}u\| = \sup_{\|u\| \le 1} Ke^{\beta t} \|u\| \le Ke^{\beta}$$

como queríamos mostrar.

Exemplo 6.1 : estabilidade do esquema de Euler para equação de difusão.

Considere o esquema numérico

$$u_k^{n+1} = (1 - 2r)u_k^n + r(u_{k+1}^n + u_{k-1}^n)$$

para a solução de $v_t = \nu v_{xx}$. Mostraremos que esse esquema é **condicionalmente** estável com relação à norma do supremo.

Observamos que se $1 - 2r \ge 0$ então

$$|u_k^{n+1}| \le (1-2r)|u_k^n| + r|u_{k+1}^n| + r|u_{k-1}^n| \le (1-2r+r+r)||u^n||_{\infty}$$

e assim, tomando o supremo para $0 \le k \le \infty$:

$$u^{n+1} \|_{\infty} \le \|u^n\|_{\infty}, n = 0, 1, 2, \dots$$

o que implica $||u^{n+1}|| \le ||u^0||, n = 0, 1, 2, \dots$

Dessa forma, se $0 \le r \le 1/2$, a condição de estabilidade é satisfeita para K = $1, \beta = 0.$

Exemplo 6.2 : estabilidade do esquema de Euler para $v_t + av_x = 0$

$$v_t + av_x = 0$$
, $x > 0$, $t > 0$

com condição de contorno v(0,t) = q(t) e condição inicial v(x,0) = f(x). O esquema de Euler para essa equação é

$$\frac{v_k^{n+1} - v_k^n}{\triangle t} + a \frac{v_{k+1}^n - v_k^n}{\triangle x} = 0$$

e assim temos

$$v_0^n = g(t_n), n = 0, 1, 2, \dots$$

$$v_k^0 = f(x_k), k = 0, 1, 2, \dots$$

$$v_k^{n+1} = (1+R)v_k^n - Rv_{k+1}^n, k = 0, 1, 2, \dots, n = 0, 1, 2, \dots$$

onde $R = a \Delta t / \Delta x$.

Observamos que

$$\begin{split} \sum_{k=-\infty}^{\infty} |v_k^{n+1}|^2 &= \sum_{k=-\infty}^{\infty} |(1+R)v_k^n - rv_{k+1}^n|^2 \\ \sum_{k=-\infty}^{\infty} |v_k^{n+1}|^2 &\leq \sum_{k=-\infty}^{\infty} \left\{ |1+R|^2 |v_k^n|^2 + 2|1+R||R||v_k^n||v_{k+1}^n| + |R|^2 |v_{k+1}^n|^2 \right\} \\ \sum_{k=-\infty}^{\infty} |v_k^{n+1}|^2 &\leq \sum_{k=-\infty}^{\infty} \left\{ |1+R|^2 |v_k^n|^2 + 2|1+R||R|\left(|v_k^n|^2 + |v_{k+1}^n|^2\right) + |R|^2 |v_{k+1}^n|^2 \right\} \\ \sum_{k=-\infty}^{\infty} |v_k^{n+1}|^2 &\leq \sum_{k=-\infty}^{\infty} \left(|1+R|^2 + 2|1+R||R| + |R|^2 \right) |v_k^n|^2 \\ \sum_{k=-\infty}^{\infty} |v_k^{n+1}|^2 &\leq (|1+R| + |R|)^2 \sum_{k=-\infty}^{\infty} |v_k^n|^2 \end{split}$$

e dessa forma, na norma ℓ_2 temos

$$|u^{n+1}||_2 \le K_1 ||u^n||_2$$
, onde $K_1 = |1+R| + |R|$

e assim

$$|u^{n+1}||_2 \le K_1^{n+1} ||u^0||_2, n = 0, 1, 2, \dots$$

Dessa forma, o esquema é estável na norma ℓ_2 se e somente se existe uma constante K tal que

$$(|1+R| + |R|)^{n+1} \le K$$

- o que somente é possível (K = 1) se $|1 + R| + |R| \le 1$. Conclusões : com relação à norma ℓ_2 ,
 - se R > 0 então |1 + R| + |R| > 1 e o esquema é incondicionalmente instável;
 - se R < 0 então o sistema é estável se e somente se $|1 + R| \le 1 + R$; ou seja (b) Temos $1 + R < 0 \rightarrow -1 \le R < 0$ (condicionalmente estável).

Introdução 6.1 : Critérios para análise numérica da estabilidade

Três modalidades de análise numérica da estabilidade serão discutidas nesta disciplina:

- Análise de Fourier;
- Análise de Von Neumann;
- Análise espectral;

Definição 6.2 A transformada discreta de Fourier de uma sequência $u \in \ell_2$ é a função $\hat{u} \in L_2[-\pi,\pi]$ definida por

$$\hat{u}(\xi) = \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-im\xi} u_m$$

para $\xi \in [-\pi, \pi]$.

Lema 6.2 Se $u \in \ell_2$ e \hat{u} é a transformada discreta de Fourier de u, então (a) (Transformada Inversa)

$$u_m = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{im\xi} \hat{u}(\xi) d\xi$$

(b) (Identidade de Parseval)

$$\|\hat{u}\|_2 = \|u\|_2$$

Prova: (a)

$$\frac{1}{\sqrt{2\pi}} \int_{-pi}^{\pi} e^{ik\xi} \hat{u}(\xi) d\xi = \frac{1}{\sqrt{2\pi}} e^{ik\xi} \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-im\xi} u_m d\xi = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} u_m \int_{-\pi}^{\pi} e^{i(k-m)\xi} d\xi$$

e assim

$$\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}e^{ik\xi}\hat{u}(\xi)d\xi = \frac{1}{2\pi}\sum_{m=-\infty}^{\infty}u_m(2\pi\delta_{km}) = u_k$$

$$\|\hat{u}\|_2^2 = \int^{\pi} |\hat{u}(\xi)|^2 d\xi = \int^{\pi}$$

$$\begin{aligned} |_{2}^{2} &= \int_{-\pi} |\hat{u}(\xi)|^{2} d\xi = \int_{-\pi} \overline{\hat{u}(\xi)} \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-im\xi} u_{m} d\xi = \\ &\frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} u_{m} \int_{-\pi}^{\pi} e^{-im\xi} \overline{\hat{u}(\xi)} d\xi \end{aligned}$$

1

 ∞

e dessa forma

$$\|\hat{u}\|_{2}^{2} = \sum_{m=-\infty}^{\infty} u_{m} \overline{\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{im\xi} \hat{u}(\xi)} d\xi = \sum_{m=-\infty}^{\infty} u_{m} \overline{u_{m}} = \|u\|_{2}^{2}.$$

Lema 6.3 : Estratégia para Análise de Fourier

A sequência $\{u^n\}$ é estável em $\ell_{2, \Delta x}$ se e somente se a sequência $\{\hat{u}^n\}$ é estável em $L_2([-\pi, \pi])$.

Exemplo 6.3 : análise de Fourier do esquema de Euler para equação de difusão

Consideramos

$$u_k^{n+1} = ru_{k-1}^n + (1-2r)u_k^n + ru_{k+1}^n , -\infty < k < \infty$$

onde $r = \nu \Delta t / (\Delta x)^2$, e aplicamos a Transformada Discreta de Fourier

$$\begin{split} \hat{u}^{n+1} &= \frac{1}{\sqrt{2\pi}} \sum_{k=-\infty}^{\infty} e^{-ik\xi} \left(r u_{k-1}^n + (1-2r) u_k^n + r u_{k+1}^n \right) = \\ &\frac{1}{\sqrt{2\pi}} \sum_{k=-\infty}^{\infty} \left[r e^{-i(k+1)\xi} + (1-2r) \exp^{-ik\xi} + r e^{-i(k-1)\xi} \right] u_k^n \end{split}$$

e assim

 $\hat{u}^{n+1}(\xi) = \left[re^{-i\xi} + (1-2r) + re^{i\xi}\right]\hat{u}^n(\xi)$

e ent $\tilde{a}o$

$$\hat{u}^{n+1}(\xi) = (2r\cos(\xi) + (1-2r))\,\hat{u}^n(\xi) = \left(1 - 4rsen^2(\xi/2)\right)\hat{u}^n(\xi)$$

Dessa forma, o esquema de Euler para $v_t=\nu v_{xx}$ é estável na norma energia em $\ell_{2,\bigtriangleup x}$ se e somente se

$$\left|1 - 4rsen^2(\xi/2)\right| \le 1$$

Temos então

$$-1 \le 1 - 4rsen^2(\xi/2) \Leftrightarrow sen^2(\xi/2) \le 2/r \ \forall \xi \in [-\pi,\pi].$$

Assim, uma condição necessária e suficiente para a estabilidade é $0 < r \le 1/2$.

Definição 6.3 A quantidade ρ em $\hat{u}^{n+1}(\xi) = \rho u^{n+1}(\xi)$ é chamada de símbolo do esquema numérico correspondente. Assumiremos que ρ é uma função contínua de e ten ξ . Muitas vezes assumiremos que $\rho(\xi)$ é derivável ou mesmo duas vezes derivável.

Exemplo 6.4 : análise de Fourier do esquema de Euler para $v_t + av_x = 0$

Considere o esquema de Euler para $v_t + av_x = 0, a < 0$:

$$u_k^{n+1} = (1+R)u_k^n - Ru_{k+1}^n, k = 0, \pm 1, \pm 2, \dots$$

onde $R = a \triangle t / \triangle x$.

Aplicando a TDF temos

$$\hat{u}^{n+1}(\xi) = (1+R)\hat{u}^n(\xi) - Re^{i\xi}\hat{u}^n(\xi)$$

e assim $\rho(\xi) = 1 + R - R\cos(\xi) - iRsen(\xi)$. Como $\rho(\xi)$ é complexo:

$$|\rho(\xi)|^2 = (1+R)^2 - 2R(1+R)\cos(\xi) + R^2.$$

O valores máximo e mínimo da expressão à direita correspondem
a $\xi=\pm\pi$ e $\xi=0.$ ComoR<0,temos

$$|1+2R| \le |\rho(\xi)| \le |1|$$

e então

$$-1 \le 1 + 2R \Rightarrow -1 \le R < 0$$

é a condição para estabilidade do esquema numérico.

Exemplo 6.5 : estabilidade do esquema de Crank-Nicolson para equação de difusão

Considere o esquema implícito de Crank-Nicolson para $v_t = \nu v_{xx}$:

$$-\frac{r}{2}u_{k+1}^{n+1} + (1+r)u_k^{n+1} - \frac{r}{2}u_{k+1}^{n+1} = \frac{r}{2}u_{k-1}^n + (1-r)u_k^n + \frac{r}{2}u_{k+1}^n , \ k = 0, 1, 2, \dots$$

Aplicando a TDF,

$$-\frac{r}{2}e^{-i\xi}\hat{u}^{n+1} + (1+r)\hat{u}^{n+1} - \frac{r}{2}e^{i\xi}\hat{u}^{n+1} = \frac{r}{2}e^{-i\xi}\hat{u}^n + (1-r)\hat{u}^n + \frac{r}{2}e^{i\xi}\hat{u}^n$$

e ent $\tilde{a}o$

$$\begin{bmatrix} -\frac{r}{2} \left(e^{-i\xi} + e^{i\xi} \right) + 1 + r \end{bmatrix} \hat{u}^{n+1} = \begin{bmatrix} \frac{r}{2} \left(e^{-i\xi} + e^{i\xi} \right) + 1 - r \end{bmatrix} \hat{u}^n$$
$$(-r\cos(\xi)1 + r) \hat{u}^{n+1} = (r\cos(\xi) + 1 - r) \hat{u}^n$$
$$(1 + 2rsen^2(\xi/2)) \hat{u}^{n+1} = (1 - 2rsen^2(\xi/2)) \hat{u}^n$$

e temos

$$\rho(\xi) = \frac{1 - 2rsen^2(\xi/2)}{1 + 2rsen^2(\xi/2)} \ .$$

Assim, como r > 0,

$$|\rho(\xi)| \le \frac{|1| + |2rsen^2(\xi/2)|}{1 + 2rsen^2(\xi/2)} \le \frac{1 + 2rsen^2(\xi/2)}{1 + 2rsen^2(\xi/2)} = 1$$

e esse esquema numérico é incondicionalmente estável na norma $\ell_{2,\Delta x}$.

Lema 6.4 : condição de von Neumann para estabilidade usando TDF O esquema de diferenças $u^{n+1} = Qu^n$ é estável com respeito à norma energia se e somente se existem constantes positivas Δt_0 , Δx_0 e C tais que

$$|\rho(\xi)| \le 1 + C \triangle t$$

para
$$0 < \Delta t \leq \Delta t_0, \ 0 < \Delta x \leq \Delta x_0 \ e \ todo \ \xi \in [-\pi, \pi]$$

Demonstração :

 $\overleftarrow{\leftarrow} \text{Lembramos } |\rho(\xi)| \le 1 + C \triangle t \le e^{C \triangle t}, \text{ e então}$

 $|\rho(\xi)|^{n+1} \le e^{(n+1)C\triangle t}.$

Dessa forma

$$\begin{aligned} |\rho(\xi)|^{n+1}|^2 &|\hat{u}^0(\xi)|^2 \le \left(e^{(n+1)C\Delta t}\right)^2 |\hat{u}^0(\xi)|^2 \\ \Longrightarrow &\int_{-\pi}^{\pi} |\hat{u}^{n+1}(\xi)|^2 d\xi \le \int_{-\pi}^{\pi} e^{2(n+1)C\Delta t} &|\hat{u}^0(\xi)|^2 d\xi \\ &\implies \|\hat{u}^{n+1}(\xi)\| \le e^{(n+1)C\Delta t} &\|\hat{u}^0(\xi)\| \end{aligned}$$

e o esquema numérico é estável na norma
 $\ell_2.$ Para a norma energia, temos

$$||u^{n+1}||_{2,\Delta x} = \sqrt{\Delta x} ||u^{n+1}||_2 = \sqrt{\Delta x} ||\hat{u}^{n+1}||_2 \le$$

$$\sqrt{\triangle x} e^{b(n+1)\triangle t} \|\hat{u}^0\|_2 = \sqrt{\triangle x} e^{b(n+1)\triangle t} \|u^0\|_2 = e^{b(n+1)\triangle t} \|u^0\|_{2,\triangle x}$$

e a estabilidade também segue para a norma energia.

 \implies Omitida. Prova por contradição em J. Thomas.

Exemplo 6.6 : estabilidade do esquema de Euler para $v_t = \nu v_{xx} + bv$

Considere o esquema de Euler

$$u_k^{n+1} = ru_{k-1}^n + (1 - 2r + b\Delta t)u_k^n + ru_{k+1}^n, k = \pm 1, \pm 2, \dots$$

para a solução de $v_t = v_{xx} + \nu v_{xx} + bv, b > 0.$

Tomando a transformada de Fourier

$$\hat{u}^{n+1} = re^{-\xi i}\hat{u}^n + (1 - 2r + b\Delta t)\hat{u}^n + re^{\xi i}\hat{u}^n$$
$$\hat{u}^{n+1} = (1 - 2r + b\Delta t + 2r\cos(\xi))\hat{u}^n$$

e assim o símbolo $\rho(\xi)$ satisfaz

$$\rho(\xi) = \left(1 - 4r \mathrm{sen}^2(\xi/2)\right) + b \triangle t \; .$$

Dessa forma, se r < 1/2 temos

$$|\rho(\xi)| \le 1 + b \triangle t \le e^{b \triangle t}$$

e assim es
sa esquema numérico é condicionalmente estável na norma energia, com condição
 r < 1/2.

Exemplo 6.7 : Estabilidade de esquemas de passo duplo

Considere o esquema de Leapfrog para $v_t = \nu v_{xx}$:

$$u_k^{n+1} - 2r(u_{k-1}^n - 2u_k^n + u_{k+1}^n) - u_k^{n-1} = 0$$

Aplicando a TDF

$$\begin{aligned} \hat{u}^{n+1} &- 2r(e^{i\xi} - 2 + e^{-i\xi})\hat{u}^n - \hat{u}^{n-1} = 0\\ \hat{u}^{n+1} &+ 4r(1 - \cos(\xi))\hat{u}^n - \hat{u}^{n-1} = 0\\ \hat{u}^{n+1} &+ 8r\sin^2(\xi/2)\hat{u}^n - \hat{u}^{n-1} = 0. \end{aligned}$$

Dessa vez, as soluções \hat{u}^n verificarão

$$\|u^n\| \le e^{\beta t} \|u^0\|$$

se e somente se as raízes λ_1 e λ_2 da equação característica

$$\lambda^2 + 8r\sin^2(\xi/2)\lambda - 1 = 0$$

satisfazerem:

Entretanto, da equação característica concluímos $\lambda_1\lambda_2=-1$ o que impossibilita a segunda alternativa acima. Além disso, seu discriminante é

$$\Delta = 64r^2 \sin^4(\xi/2) - 4(1)(-1) \ge 4$$

e sempre teremos duas raízes reais distintas

$$\lambda_1 = \sqrt{16r^2 \mathrm{sen}\,^4(\xi/2) + 1} - 4r \mathrm{sen}\,^2(\xi/2)$$
$$\lambda_2 = -\sqrt{16r^2 \mathrm{sen}\,^4(\xi/2) + 1} - 4r \mathrm{sen}\,^2(\xi/2)$$

que satisfazem $|\lambda_1||\lambda_2| = 1$.

Após estudo dos sinais das derivadas da função $p(u) = \sqrt{1 + u^2} - u$ concluímos que essa função é monótona decrescente e então $0 < p(u) \le p(0) = 1$. Assim segue $|\lambda_1| \le 1$.

Após estudo dos sinais das derivadas da função $q(u) = -\sqrt{1+u^2} - u$ concluímos q''(u) < 0, ou seja, a função é côncava para baixo. Então $q(u) \le q(0) + q'(0)u$ e segue

$$|\lambda_2| \ge 1 + 4r\sin^2(\xi/2)$$

e a estimativa $|\lambda_2| \leq 1 + C \triangle t$ não pode valer.

Dessa forma, concluímos que esse esquema é incondicionalmente instável.

Introdução 6.2 : Análise de von Neumann

A estabilidade de um esquema numérico de passo simples é estudada usando harmônicos discretos de Fourier; para tal, substituímos

$$u_{k}^{n} = \epsilon^{n} e^{ijk\pi\Delta x}$$

e restringimos os parâmetros de tal forma que $|\epsilon| \leq 1$.

Exemplo 6.8 : Análise de von Neumann para o esquema de Euler para $v_t = \nu v_{xx}$

Considere $u_k^{n+1} = ru_{k-1}^n + (1-2r)u_k^n + ru_{k+1}^n$. Temos

$$\epsilon^{n+1} e^{ijk\pi \Delta x} = \epsilon^n e^{ijk\pi \Delta x} (re^{-ijk\pi \Delta x} + (1-2r) + re^{ijk\pi \Delta x})$$

$$\Rightarrow \epsilon = 1 - 2r(1 - \cos(j\pi \Delta x)) = 1 - 4r\sin^2\left(\frac{j\pi \Delta x}{2}\right)$$

e então o esquema é estável se e somente $|\epsilon| \leq 1$, ou seja $r \leq 1/2$.

Introdução 6.3 : Análise Espectral

No contexto de um esquema numérico de passo simples é o estabelecimento de estimativas sobre os autovalores da matriz $u^{n+1} = Qu^n, n = 0, 1, 2, \ldots$, a ferramenta da análise espectral Q, e consequentemente sobre sua norma induzida.

Relembramos o lema (6.1):

Lema: Um esquema numérico de passo simples $u^{n+1} = Qu^n, n = 0, 1, 2, ...$ é estável com respeito à norma $\|\cdot\|$ se e somente se existem constantes $K \in \beta$ tais que

$$||Q^{n+1}|| \le Ke^{\beta t}, n = 0, 1, 2, \dots$$

para $0 \le t = (n+1) \triangle t$, $0 < \triangle x \le \triangle x_0 \in 0 < \triangle t \le \triangle t_0$.

Lema 6.5 (Teorema dos Discos de Gerschgorin) Seja $Q = (q_{ij})$ uma matriz $L \times L$ e seja

$$\rho_s = \sum_{j=1; j \neq s} |q_{sj}|$$

a soma dos valores absolutos dos elementos da s-ésima linha que estão fora da diagonal principal. Então para cada autovalor λ de Q existe um s tal que

 $|\lambda - q_{ss}| \le \rho_s.$

Prova: Omitida.

Lema 6.6 Se A é uma matriz $N \times N$ então

$$\|A\|_{2} = \sqrt{\sigma(A^{T}A)} \ge \max\{|\lambda| : \exists x \in \mathbb{C}^{N}, Ax = \lambda x\}.$$

Se A é hermitiana, então a igualdade se verifica.

Exemplo 6.9 : Análise espectral do esquema de Crank-Nicolson para $v_t = \nu v_{xx}$

O esquema de Crank-Nicolson para $v_t = \nu v_{xx}$ escreve-se

$$Au^{n+1} = Bu^n, n = 0, 1, 2, \dots$$

onde

$$A = \begin{bmatrix} 1+r & -r/2 & 0 & \dots & & \\ -r/2 & 1+r & -r/2 & 0 & \dots & \\ 0 & -r/2 & 1+r & -r/2 & 0 & \dots & \\ & 0 & r/2 & \dots & \dots & \dots & \\ & 0 & \dots & 1+r & -r/2 & \\ & & \dots & -r/2 & 1+r \end{bmatrix}$$
$$B = \begin{bmatrix} 1-r & r/2 & 0 & \dots & & \\ r/2 & 1-r & r/2 & 0 & \dots & \\ 0 & r/2 & 1-r & r/2 & 0 & \dots & \\ & 0 & r/2 & \dots & \dots & \\ & 0 & 0 & \dots & 1-r & r/2 & \\ & & \dots & r/2 & 1-r \end{bmatrix}$$

e desse forma temos que estimar a norma espectral da matriz $Q = A^{-1}B$. Observamos que B = 2I - A e então $Q = 2A^{-1} - I$. Isso implica que Q é simétrica, e então $||Q||_2 = \sigma(Q)$ (raio espectral).

Dessa forma, autovalores $\mu \in \lambda$ das matrizes $Q \in A$ se relacionam por

$$\mu = \frac{2}{\lambda} - 1.$$

Pelo Teorema dos Discos de Gerschgorin, temos

 $|\lambda - (1+r)| \le r$

e assim $1 \leq \lambda \leq 1 + 2r$. Finalmente,

$$\lambda \geq 1 \Rightarrow 0 < \frac{1}{\lambda} \leq 1 \Rightarrow -1 < \mu = \frac{2}{\lambda} - 1 \leq 1$$

e dessa forma
 $0 < \sigma(Q) = \|Q\|_2 \leq 1$ e o esquema numérico é incondicionalmente estável.

Exemplo 6.10 : Análise espectral do esquema de Euler para $v_t + av_x = 0$

Considere novamente o esquema numérico

$$u_k^{n+1} = (1+R)u_k^n - Ru_{k+1}^n, k = 0, 1, 2, \dots, K-1$$
$$u_K^{n+1} = 0, \quad u_k^n = f(k \Delta x), k = 0, 1, 2, \dots, K.$$

No formato matricial, temos $u^{n+1} = Qu^n, n = 0, 1, 2, ...$ onde u^0 é determinado da condição inicial e

$$Q = \begin{bmatrix} 1+R & -R & 0 & \dots & \\ 0 & 1+R & -R & 0 & \\ & & \dots & \dots & \dots & \\ & \dots & 0 & 1+R & -R \\ & & \dots & 0 & 1+R \end{bmatrix}$$

Como Q é triangular superior, todos os seus autovalores μ serão iguais a 1 + R, e então $\sigma(Q) = |1 + R|$.

Como Q não é simétrica, temos em geral $\sigma(Q) \leq ||Q||_2$, e a restrição

$$\sigma(Q) = |1 + R| \le 1$$

nos dará apenas uma condição necessária para a estabilidade. De fato, temos $-1 \le 1+R \le 1 \Rightarrow -2 \le R \le 0.$

Pela Análise de Fourier, já havíamos concluido que uma condição necessária e suficiente para a estabilidade é $-1 \le R \le 0$.

7 Convergência e o teorema de Lax.

Definição 7.1 Um esquema numérico de diferenças finitas $L_k^n u_k^n = g_k^n$ que aproxima uma equação diferencial parcial Lu = g é **pontualmente convergente** se para todo x e t

$$u_k^n \to u(x,t)$$

ao $\triangle x \to 0, \triangle t \to 0 \ e \ (k \triangle x, (n+1) \triangle t) \to (x, t).$

Definição 7.2 Um esquema numérico de diferenças finitas $L_k^n u_k^n = g_k^n$ que aproxima uma equação diferencial parcial Lu = g é **convergente** se para todo t

$$\|(u_k)^n - u(x_k, t)\| \to 0$$

 $ao \ \triangle x \to 0 \ e \ \triangle t \to 0.$

Lema 7.1 : Teorema da Equivalência de Lax

(i) Um esquema numérico consistente de passo simples para um problema linear diferencial parcial bem-posto de valores iniciais é convergente se e somente se é estável. Em caso afirmativo, a ordem de convergência é a mesma ordem de consistência.

(ii) Um esquema numérico consistente de passo simples para um problema linear diferencial parcial bem-posto de valores iniciais e valores de contorno é convergente somente se o esquema de aproximação da EDP for estável. Em caso afirmativo, a ordem de convergência é a mesma ordem de consistência do problema.

Observações :

- Um problema de valores iniciais é bem-posto se sua solução depende continuamente sobre suas condições iniciais.
- Pela parte (ii), a estabilidade do esquema numérico que aproxima a EDP pode não ser suficiente para a convergência do esquema numérico considerando as condições de contorno. Isso é porque as CC poderiam estar sendo "mal"aproximadas, e a noção de estabilidade definida nesta disciplina não leva isso em consideração.
- Da mesma forma que a convergência pode ser definida pontualmente ou uniformemente (via norma), tal vale para a consistência. Dessa forma, a parte (i) do Teorema acima pode ser entendida:

consistência	estabilidade	convergência
pontual ordem (p,q)	norma $\ \cdot\ $	pontual ordem (p,q)
norma ordem (p,q)	$\mid \text{norma} \mid \mid \cdot \mid \mid$	norma ordem (p,q)

Exemplo 7.1 : Convergência do esquema de Euler para problema de difusão

Já mostramos que o esquema $u_k^{n+1} = ru_{k-1}^n + (1-2r)u_k^n + ru_{k+1}^n$, para a aproximção de $v_t = \nu v_{xx}$, é consistente de primeira ordem no tempo e segunda ordem no espaço (consistência pontual). Também já mostramos que esse esquema é estável se e somente se $r \leq 1/2$.

Condições de contorno de Dirichlet:

$$v(0,t) = a(t), v(1,t) = b(t), t \ge 0$$

o esquema numérico tem duas equações

$$\begin{array}{rl} v_0^n = & a(n \triangle t) \\ v_K^n = b(n \triangle t) & , n = 0, 1, 2, \ldots \end{array}$$

que são aproximações exatas das condições de contorno.

Dessa forma, a parte (i) do Teorema de Lax pode em verdade ser aplicada, garantindo que o esquema acima é pontualmente convergente à solução exata do problema de difusão acima se e somente se $r \leq 1/2$.

Condições de contorno de Neumann:

$$v_x(0,t) = a(t), v_x(1,t) = b(t), t \ge 0$$

encas finitas.

Neste caso, o parte (ii) Teorema de Lax apenas nos diz que uma condição necessária para a convergência já foi satisfeita, mas ainda não podemos garantir tal convergência.

 \Rightarrow Uma análise de consistência das aproximações para as condições de contorno, e respectivas ordens, se faz necessária para que se possa concluir a convergência da solução numérica do problema como um todo, bem como a ordem de convergência.

Boas notícias: O resultado da análise espectral independe das condições de contorno. Dessa forma, se nosso esquema for consistente e Q for simétrica, as condições necessária e suficiente dadas pela análise espectral são condições para a convergência do problema de valores iniciais e valores de contorno como um todo.

Exemplo 7.2 : Análise espectral do esquema de Euler para o problema de difusão com CC mistas

Seja o problema de valores iniciais e condições de contorno

$$\begin{array}{rcl} v_t = & \nu v_{xx}, & x \in (0,1), t > 0 \\ v(x,0) = & f(x) = x(2-x), & x \in [0,1] \\ v(0,t) = & 0, & t \ge 0 \\ v_x(1,t) = & 0, & t \ge 0 \end{array}$$

cuja solução pode ser encontrada:

$$v(x,t) = \sum_{m=1}^{\infty} a_m e^{-\lambda_m t} \sin\left(\frac{(2m+1)\pi x}{2}\right)$$

onde os coeficientes a_m e os autovalores λ_m são determinados por:

$$a_m = \frac{\int_0^1 x(2-x)\sin\left(\frac{(2m+1)\pi x}{2}\right)dx}{\int_0^1 \sin^2\left(\frac{(2m+1)\pi x}{2}\right)dx}.$$
$$\lambda_m = \frac{(2m+1)^2\pi\nu}{4}$$

A condição de contorno $v_x(1,t) = 0$ será tratada usando a aproximação de segunda ordem

$$\frac{u_{K-1}^n - u_{K+1}^n}{2\triangle x} = 0$$

o esquema numérico deverá aproximar $v_x(0,t)$ e $v_x(1,t)$ usando fórmulas de difer- que nos dá $u_{K+1}^n = u_{K-1}^n$ então, usando a aproximação de Euler para k = K, $n = 0, 1, 2, \ldots$

$$u_K^{n+1} = ru_{K-1} + (1-2r)u_K^n + ru_{K+1}^n$$

que então implica

$$u_K^{n+1} = (1 - 2r)u_K^n + 2ru_{K-1}^n$$

Dessa forma, o esquema adotado será

$$u_k^{n+1} = ru_{k-1}^n + (1-2r)u_k^n + ru_{k+1}^n, \quad k = 1, 2, 3, \dots; n = 0, 1, 2, \dots$$

$$u_k^0 = f(k \Delta x), k = 0, 1, 2, \dots$$

$$u_0^n = 0, \qquad n = 0, 1, 2, \dots$$

$$u_K^{n+1} = (1-2r)u_K^n + 2ru_{K-1}^n, \qquad n = 0, 1, 2, \dots$$

Pode-se mostrar que a EDP é aproximada por esquema consistente de primeira ordem no tempo e segunda no espaço.

Analisaremos a equação que aproxima a CC em x = 1:

$$\begin{split} \tau_K^n &= \frac{\partial u(1,t_n)}{\partial x} = \frac{u_{K+1}^n - u_K^n}{\Delta x} - \frac{\partial^2 u(1,t_n)}{\partial x^2} \frac{\Delta x}{2} - \frac{\partial^3 u(1,t_n)}{\partial x^3} \frac{(\Delta x)^2}{3!} + O\left((\Delta x)^3\right) \\ \tau_K^n &= \\ \frac{1}{\Delta x} \left[\frac{u_K^{n+1} - (1-2r)u_K^n}{2r} - u_K^n \right] - \frac{\partial^2 u(1,t_n)}{\partial x^2} \frac{\Delta x}{2} - \frac{\partial^3 u(1,t_n)}{\partial x^3} \frac{(\Delta x)^2}{3!} + O\left((\Delta x)^3\right) \\ \tau_K^n &= \frac{1}{\Delta x} \frac{u_K^{n+1} - u_K^n}{2r} - \frac{\partial^2 u(1,t_n)}{\partial x^2} \frac{\Delta x}{2} - \frac{\partial^3 u(1,t_n)}{\partial x^3} \frac{(\Delta x)^2}{3!} + O\left((\Delta x)^3\right) \\ \tau_K^n &= \frac{\Delta x}{2\nu} \left[\frac{\partial u(1,t_n)}{\partial t} + \frac{\partial^2 u(1,t_n)}{\partial t^2} \frac{\Delta t}{2} + O((\Delta t)^2) \right] - \frac{\partial^2 u(1,t_n)}{\partial x^2} \frac{\Delta x}{2} - \frac{\partial^3 u(1,t_n)}{\partial x^2} \frac{(\Delta x)^2}{2} - \frac{\partial^3 u(1,t_n)}{\partial t^2} \frac{(\Delta x)^2}{2} + O\left((\Delta x)^3\right) \\ \tau_K^n &= \frac{\Delta x}{2\nu} \left[\nu \frac{\partial^2 u(1,t_n)}{\partial x^2} + \frac{\partial^2 u(1,t_n)}{\partial t^2} \frac{\Delta t}{2} + O\left((\Delta t)^2\right) \right] - \frac{\partial^2 u(1,t_n)}{\partial x^2} \frac{\Delta x}{2} + O\left((\Delta x)^2\right) \end{split}$$

e concluímos $\tau_K^n = O(\triangle t \triangle x) + O((\triangle x)^2).$

Surpresa: o esquema numérico como um todo pode não ser de segunda ordem no espaço...

Para decidirmos estabilidade, e então convergência, observamos que todo o esquema acima pode ser escrito na forma $u^{n+1} = Qu^n$, $n = 0, 1, 2, \ldots$, onde

$$u^n = \begin{bmatrix} u_1^n & u_2^n & \dots & u_{K-1}^n & u_K^n \end{bmatrix}^T$$

$$Q = \begin{bmatrix} 1 - 2r & r & \dots & \\ r & 1 - 2r & r & \dots & \\ 0 & r & 1 - 2r & r & \dots & \\ & \dots & \dots & r & \\ & \dots & 0 & 2r & 1 - 2r \end{bmatrix}$$

e onde u^0 é determinado usando as condições iniciais. Entretanto, pode-se mostrar que

$$S^{-1}QS = \begin{bmatrix} 1-2r & r & \dots & \\ r & 1-2r & r & \dots & \\ 0 & r & 1-2r & r & \dots & \\ & & \dots & \dots & \sqrt{2}r & \\ & & \dots & 0 & \sqrt{2}r & 1-2r & \end{bmatrix}$$

para

$$S = diag \left(\begin{array}{cccccccc} 1 & 1 & \dots & 1 & \sqrt{2} \end{array} \right)$$

e então Q é similar a uma matriz que possui autovalores

$$\lambda_j = 1 - 4r \mathrm{sen}^2 \left(\frac{(2j+1)\pi}{4K} \right)$$

e então $r \leq 1/2$ é uma condição necessária e suficiente para a convergência do esquema numérico.

8 Solução numérica de equações parabólicas.

Introdução 8.1 : Modelo parabólico básico em duas dimensões .

O problema de difusão (calor) em duas dimensões escreve-se:

$$v_t = \nu(v_{xx} + v_{yy}) + F(x, y, t), (x, y) \in R, t > 0$$

$$v(x, y, t) = g(x, y, t), (x, y) \in \partial R, t > 0$$

$$v(x, y, 0) = f(x, y), (x, y) \in \overline{R}$$

A estratégia de solução via diferencias finitas requer discretizações no tempo e no espaço. A novidade é que agora teremos também um parâmetro Δy para a discretização da variável espacial y.

A ferramenta matemática básica para análise é o Teorema de Taylor em duas variáveis: se f(x, y, t) é uma função analítica em alguma vizinhança do ponto (x, y, t) então

$$f(x+h_x, y, t) = f(x, y, t) + \frac{\partial f(x, y, t)}{\partial x} h_x + \frac{\partial^2 f(x, y, t)}{\partial x^2} \frac{(h_x)^2}{2!} + \frac{\partial^3 f(x, y, t)}{\partial x^3} \frac{(h_x)^3}{3!} + \dots$$

ou ainda

$$f(x, y + h_y, t) = f(x, y, t) + \frac{\partial f(x, y, t)}{\partial y} h_y + \frac{\partial^2 f(x, y, t)}{\partial y^2} \frac{(h_y)^2}{2!} + \frac{\partial^3 f(x, y, t)}{\partial y^3} \frac{(h_y)^3}{3!} + \dots$$

ou ainda

$$f(x, y, t+h_t) = f(x, y, t) + \frac{\partial f(x, y, t)}{\partial t} h_t + \frac{\partial^2 f(x, y, t)}{\partial t^2} \frac{(h_t)^2}{2!} + \frac{\partial^3 f(x, y, t)}{\partial t^3} \frac{(h_t)^3}{3!} + \dots$$

A discretização será feita via

$$\begin{aligned} u(x_j, y_k, t_n) &= u_{jk}^n , \ F(x, y, t) = F_{jk}^n \\ x_j &= j \triangle x , \ y_k = k \triangle y , \ t_n = n \triangle t \end{aligned}$$

e agora precisaremos usar um sub-indice nas fórmulas δ para diferenças finitas:

$$\delta_x^1 = \frac{v_{j+1,k}^n - v_{j-1,k}^n}{2}$$

$$\delta_y^2 = v_{j,k+1}^n - 2v_{j,k}^n + v_{j,k-1}^n (\triangle y)^2$$

e assim por diante.

Dessa forma, usando diferenças simétricas de segunda ordem para v_{xx} e v_{yy} , e de primeira ordem para v_t , quando $R = [0,1] \times [0,1]$, vemos que $v_t = \nu(v_{xx} + v_{yy}) + F(x,t)$ discretiza-se:

$$\frac{v_{jk}^{n+1} - v_{jk}^n}{\triangle t} = \nu \left(\frac{v_{j+1,k}^n - 2v_{j,k}^n + v_{j-1,k}^n}{(\triangle x)^2} + \frac{v_{j,k+1}^n - 2v_{j,k}^n + v_{j,k-1}^n}{(\triangle y)^2} \right) + F_{jk}^n$$

para $n = 0, 1, 2, 3, \dots; j = 1, 2, 3, \dots, J - 1; k = 1, 2, 3, \dots, K - 1$, e temos

$$v_{jk}^{n+1} = v_{jk}^n + (r_x \delta_x^2 + r_y \delta_y^2) v_{jk}^n + \triangle t F_{jk}^n$$

onde $r_x = \nu \triangle t / (\triangle x)^2$, $r_y = \nu \triangle t / (\triangle y)^2$. A condição inicial $v(x, y, 0) = f(x, y), (x, y) \in \overline{R}$ se escreve

$$v_{j,k}^0 = f(j \triangle x, k \triangle y), j = 0, 1, \dots, J; k = 0, 1, \dots, K.$$

Ao passo que a condição de contorno $v(x, y, t) = g(x, y, t), (x, y) \in \partial R, t > 0$ escrevese

$$\begin{array}{ll} v_{0,k}^n = & g(0,k \triangle y,n \triangle t), \quad k=0,1,\ldots,K,n \ge 0 \\ v_{J,k}^n = & g(1,k \triangle y,n \triangle t), \quad k=0,1,\ldots,K,n \ge 0 \\ v_{j,0}^n = & g(j \triangle x,0,n \triangle t), \quad j=0,1,\ldots,J,n \ge 0 \\ v_{i,K}^n = & g(j \triangle x,1,n \triangle t), \quad j=0,1,\ldots,J,n \ge 0 \end{array}$$

Introdução 8.2 : Aspectos computacionais e desempenho

Estrutura de dados: Usaremos matrizes multidimensionais ou hiper-matrizes A = A(j, k, n).

Matlab 6:	g77:	gcc
A = zeros(100, 100, 80);	real $A(100,100,80)$	float $A[100][100][80];$
size(A)	integer n	$\operatorname{int}\mathrm{n};$
ans	do n=1,20	for $(n = 0; n < 80; n + +)$
100 100 80	A(1,2,n) = 1E0;	A[1][1][n] = 1.0E + 0;
	end do	

Estratégia para computação de desempenho (speed-up): agora temos a possibilidade de fazer operações vetoriais ou mesmo matriciais, o que aumenta o desempenho do código, mas que depende das características de cada compilador.

Estratégia para otimização de memória usada (workspace): agora temos a possibilidade de usar muito mais memória do que o estritamente necessário, dependendo do propósito da computação.

Exemplo: se somente a solução em $t = t_f$ nos interessa (rumo à solução estacionária, por exemplo), podemos tentar armazenar nossos dados em uma matriz simples, que então deveria ser atualizada em cada etapa do laço mais externo em n.

Usaremos Matlab para explicar como implementar

$$v_{jk}^{n+1} = v_{jk}^{n} + (r_x \delta_x^2 + r_y \delta_y^2) v_{jk}^{n} + \triangle t F_{jk}^{n}$$

Código nível 0: (totalmente escalar)

for n=1:n_max for k=2: k max

```
for n=1:n_max

for k=2:k_max

for j=2:j_max

dxx = v(j+1,k,n) - 2 * v(j,k,n) + v(j-1,k,n);
dyy = v(j,k+1,n) - 2 * v(j,k,n) + v(j,k-1,n);
F_jkn = \dots;
v(j,k,n+1) = v(j,k,n) + (rx^*dxx + ry^*dyy) + delta_t * F_jkn
end

end

end

end

Código nível 1: (alguma vetorização )
```

$$\begin{aligned} & dyy = v(2:j_max, k+1, n) - 2*v(2:j_max, k, n) + v(2:j_max, k-1, n); \\ & v(2:j_max, k, n+1) = v(2:j_max, k, n) + ry*dyy; \\ & end \\ & for \ j=2: \ j_max \end{aligned}$$

$$\begin{aligned} & dxx = v(j+1,2:k_max,n) - 2*v(j,2:k_max,n) + v(j-1,2:k_max,n); \\ & v(j,2:k_max,n+1) = v(j,2:k_max,n) + rx^*dxx; \\ & Fj_kn = F(2:k_max,y_k,t_n); \\ & v(j,2:k_max,n+1) = v(j,2:k_max,n) + delta_t * Fj_kn; \\ & end \end{aligned}$$

Código nível 2: (matriz-vetor) Definimos

$$v_x x = v_{yy} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T$$

for n=1:n_max for k=2: k_max v(2:j_max,k,n+1) = v(2:j_max,k,n) + ry*v(2:j_max,k-1:k+1,n)*v_yy; end for j=2: j_max v(j,2:k_max,n+1) = v(j,2:k_max,n) + rx*v_xx^T*v(j-1:j+1,2:k_max,n); Fj_kn = $F(x_j, (2:k_max) \triangle y, t_n);$ v(j,2:k_max,n+1) = v(j,2:k_max,n) + delta_t * Fj_kn; end

 end

Código nível 3: (matriz-matriz) Definimos duas matrizes de ordems $(j_max - 1) \times (j_max + 1) \in (k_max + 1) \times (k_max - 1)$ respectivamente:

$$M_{xx} = \begin{bmatrix} 1 & -2 & 1 & & \\ & 1 & -2 & 1 & & \\ & & & \ddots & \ddots & \\ & & & 1 & -2 & 1 \end{bmatrix} \quad M_{yy} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 1 & -2 & 1 & \\ & & 1 & -2 & \\ & & & \ddots & 1 \\ & & & 1 & -2 \\ & & & & 1 \end{bmatrix}$$

for $n=1:n_max$

Exemplo 8.1 : esquema de Euler para problema de difusão em duas dimensões

Considere a solução numérica, via esquema de Euler, do problema

$$\begin{array}{rcl} v_t = & \nu(v_{xx} + v_{yy}), & (x, y) \in (0, 1) \times (0, 1), t > 0 \\ v(x, y, 0) = & \operatorname{sen}(\pi x) \operatorname{sen}(2\pi y), & (x, y) \in [0, 1] \times [0, 1] \\ v(0, y, t) = & v(1, y, t) = 0 & , y \in (0, 1), t > 0 \\ v(x, 0, t) = & v(x, 1, t) = 0 & , x \in (0, 1), t > 0 \end{array}$$

usando os comandos básicos de inicialização e computação descritos acima. Escrevendo a solução da EDP como

$$v(x, y, t) = \exp(\lambda t)\psi(x, y)$$

vemos que a função $\psi(x, y)$ deve satisfazer

$$\nabla^2(\psi(x,y)) = \lambda\psi(x,y)$$

e a técnica de expansão por autofunções assume

$$\psi(x,y) = \sum_{m,n=0}^{\infty} A_{mn} p_m(x) q_n(y)$$

onde então p_m e q_n satisfazem

$$p_m''(x) = \alpha_m p_m(x) , \ p_m(0) = p_m(1) = 0$$

$$q_n''(x) = \beta_n q_n(x) , \ q_n(0) = q_n(1) = 0.$$

Dessa forma

$$\psi(x,y) = \sum_{m,n=1}^{\infty} A_{mn} \operatorname{sen} (\pi m x) \operatorname{sen} (\pi n y)$$

e assim temos autovalores $\lambda_{mn} = -(n^2 + m^2)\pi\nu$.

Por outro lado, a condição inicial nos dá

$$\operatorname{sen}(\pi x)\operatorname{sen}(2\pi y) = \sum_{m,n=1}^{\infty} A_{mn}\operatorname{sen}(\pi m x)\operatorname{sen}(\pi n y)$$

e então a solução exata de nosso problema é

$$v(x, y, t) = \exp(-5\pi^2\nu t)\operatorname{sen}(\pi x)\operatorname{sen}(2\pi y)$$

Os gráficos abaixo mostram as soluções numéricas correspondendo a t = 0 e t = 1; foram usados $\Delta x = \Delta y = 0.1$, $\Delta t = 0.20$.

Em particular, vemos que, quando $\Delta x \in \Delta y$ estão fixos, existe um valor Δt_0 para Δt que produz uma melhor aproximação à solução exata, e valores Δt menores produzem resultados desastrosos. Esse fenômeno tem a haver com a acumulação de erros de arredondamento.

Os gráficos abaixo mostram a aproximação à solução exata ao longo das retas x = 1/2 e t = 1 quando variamos Δt .

Exemplo 8.2 : Análise de consistência do esquema de Euler para $v_t = \nu(v_{xx}+v_{yy})$.

Negligenciando erro de arredondamento, temos

$$\begin{aligned} \tau_{jk}^{n} &= \\ \frac{u(x_{j}, j_{k}, t_{n+1}) - u(x_{j}, y_{k}, t_{n})}{\triangle t} - \nu \frac{u(x_{j+1}, y_{k}, t_{n}) - 2u(x_{j}, y_{k}, t_{n}) + u(x_{j-1}, y_{k}, t_{n})}{(\triangle x)^{2}} - \\ \nu \frac{u(x_{j}, y_{k+1}, t_{n}) - 2u(x_{j}, y_{k}, t_{n}) + u(x_{j}, y_{k-1}, t_{n})}{(\triangle y)^{2}} \\ \tau_{jk}^{n} &= \frac{1}{\triangle t} \left(\triangle t \frac{\partial u}{\partial t}(x_{j}, y_{k}, t_{n}) + \frac{(\triangle t)^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{j}, y_{k}, t_{n}) + O((\triangle t)^{3}) \right) - \\ \frac{\nu}{(\triangle x)^{2}} \left(\frac{2(\triangle x)^{2}}{2!} \frac{\partial^{2} u}{\partial x^{2}}(x_{j}, y_{k}, t_{n}) + \frac{2(\triangle x)^{4}}{4!} \frac{\partial^{4} u}{\partial x^{4}}(x_{j}, y_{k}, t_{n}) + \frac{2(\triangle y)^{6}}{6!} \frac{\partial^{6} u}{\partial x^{6}}(x_{j}, y_{k}, t_{n}) + \\ \frac{\nu}{(\triangle y)^{2}} \left(\frac{2(\triangle y)^{2}}{2!} \frac{\partial^{2} u}{\partial y^{2}}(x_{j}, y_{k}, t_{n}) + \frac{2(\triangle y)^{4}}{4!} \frac{\partial^{4} u}{\partial y^{4}}(x_{j}, y_{k}, t_{n}) + \frac{2(\triangle y)^{6}}{6!} \frac{\partial^{6} u}{\partial y^{6}}(x_{j}, y_{k}, t_{n}) + \\ \end{array} \right)$$

e dessa forma

$$\tau_{jk}^{n} = \frac{\Delta t}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{j}, y_{k}, t_{n}) - \frac{(\Delta x)^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}}(x_{j}, y_{k}, t_{n}) - \frac{(\Delta y)^{2}}{12} \frac{\partial^{4} u}{\partial y^{4}}(x_{j}, y_{k}, t_{n}) + O((\Delta x)^{4}, (\Delta y)^{4}, (\Delta t)^{2})$$

e o esquema numérico é de ordem 1 no tempo e dois no espaço.

Exemplo 8.3 : Análise de estabilidade do esquema de Euler para $v_t = \nu(v_{xx} + v_{yy})$.

Negligenciando o termo não -homogêneo, consideramos

$$u_{jk}^{n+1} = u_{jk}^n + (r_x \delta_x^2 + r_y \delta_y^2) u_{jk}^n$$

ou

$$u_{jk}^{n+1} = u_{jk}^n + r_x(u_{j+1,k}^n - 2u_{jk}^n + u_{j-1,k}^n) + r_y(u_{j,k+1}^n - 2u_{jk}^n + u_{j,k-1}^n)$$

Aplicando a Transformada Discreta de Fourier em duas dimensões :

$$\hat{u}(\xi,\eta) = \frac{1}{2\pi} \sum_{j,k=-\infty}^{\infty} e^{-ij\xi - ik\eta} u_{jk}$$

onde $\xi, \eta \in [-\pi, \pi]$ e onde a Identidade de Parseval $||u_{jk}||_2 = ||\hat{u}||_{L_2}$ vale, temos

$$\hat{u}^{n+1} = \hat{u}^n + r_x (e^{i\xi} - 2 + e^{-i\xi}) \hat{u}^n + r_y (e^{i\eta} - 2 + e^{-i\eta}) \hat{u}^n$$
$$\hat{u}^{n+1} = \hat{u}^n - 2r_x (1 - \cos(\xi)) \hat{u}^n - 2r_y (1 - \cos(\eta)) \hat{u}^n$$
$$\hat{u}^{n+1} = (1 - 4r_x \operatorname{sen}^2(\xi/2) - 4r_y \operatorname{sen}^2(\eta/2)) \hat{u}^n$$

e o símbolo $\rho(\xi, \eta)$ é dado por

$$\rho(\xi,\eta) = 1 - 4r_x \mathrm{sen}^2(\xi/2) - 4r_y \mathrm{sen}^2(\eta/2).$$

Entretanto, tomando derivadas parciais de ρ com relação a $\xi \in \eta$, vemos que o máximo dessa função ocorre em $(\xi, \eta) = (0, 0)$, e que o mínimo ocorre em $(\xi, \eta) = (\pi, \pi)$.

A condição $\rho(\xi,\eta) \ge -1$ então implica e requer $r_x + r_y \le 1/2$. Assim, esse esquema é estável na norma energia

$$\|u_{jk}\|_{2,\bigtriangleup x} = \sqrt{\sum_{j,k=-\infty}^{\infty} |u_{jk}|^2 \bigtriangleup x \bigtriangleup y}$$

 $O((\Delta x))$ nte se $r_x + r_y \leq 1/2$. Dessa forma, pelo Teorema de Lax, o esquema de Euler para solução do problema bidimensional de difusão , com condições de Dirichlet, é $O((\Delta y))$

Exemplo 8.4 : problema de difusão 2D com condições de contorno de Neumann

Considere o problema de valores iniciais e condições de contorno

$$\begin{array}{ll} v_t = & \nu(v_{xx} + v_{yy}) + 10, & (x, y) \in (0, 1) \times (0, 1), t > 0 \\ v(x, y, 0) = & f(x, y), & (x, y) \in [0, 1] \times [0, 1] \\ v_x(0, y, t) = & v_x(1, y, t) = 0 & , y \in (0, 1), t > 0 \\ v_y(x, 0, t) = & v_y(x, 1, t) = 0 & , x \in (0, 1), t > 0 \end{array}$$

.

onde $f(x,y) = \operatorname{sen}^2(\pi x) \operatorname{sen}^2(\pi y)$. A condição de compatibilidade

$$\frac{\partial f}{\partial x}(0,y) = \frac{\partial f}{\partial x}(1,y) = 0$$
$$\frac{\partial f}{\partial y}(x,0) = \frac{\partial f}{\partial y}(x,1) = 0$$

é claramente satisfeita. O esquema de Euler com tratamento de segunda ordem para CC será adotado.

Solução Exata: Observamos que

$$f(x,y) = \frac{1 - \cos(2\pi x)}{2} \cdot \frac{1 - \cos(2\pi y)}{2} = \frac{1 - (\cos(2\pi x) + \cos(2\pi y)) + \cos(2\pi x)\cos(2\pi y)}{4}$$

e assim

$$f(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} \cos(m\pi x) \cos(n\pi y)$$

onde $A_{00} = 1/4$, $A_{20} = A_{02} = -1/4$, $A_{22} = 1/4$ e os demais A_{mn} são nulos. A solução exata é então

$$v(x,y,t) = \frac{1}{4} - \exp(-4\pi^2\nu t) \frac{\cos(2\pi x) + \cos(2\pi y)}{4} + \exp(-8\pi^2\nu t) \frac{\cos(2\pi x)\cos(2\pi y)}{4} .$$

Solução Numérica: A aproximação da EDP:

$$u_{jk}^{n+1} = u_{jk}^n + r_x(u_{j+1,k}^n - 2u_{jk}^n + u_{j-1,k}^n) + r_y(u_{j,k+1}^n - 2u_{jk}^n + u_{j,k-1}^n) + 10 \triangle t.$$

A condição inicial:

$$u_{jk}^0 = f(j \triangle x, k \triangle y)$$

As condições de contorno:

$$\begin{split} \frac{u_{1,k}^n - u_{-1,k}^n}{\bigtriangleup x} &= 0 \ , \ \frac{u_{J+1,k}^n - u_{J-1,k}^n}{\bigtriangleup x} = 0. \\ \frac{u_{j,1}^n - u_{j,-1}^n}{\bigtriangleup y} &= 0 \ , \ \frac{u_{j,K+1}^n - u_{j,K-1}^n}{\bigtriangleup y} = 0. \end{split}$$

e então temos $u_{-1,k}^n=u_{1,k}^n,\,u_{J+1,k}^n=u_{J-1,k}^n,\,u_{j,-1}^n=u_{j,1}^n$ e $u_{j,K+1}^n=u_{j,K-1}^n.$ Essas relações são substituídas em

$$\begin{split} u_{0k}^{n+1} &= u_{0k}^n + r_x(u_{1k}^n - 2u_{0k}^n + u_{-1,k}^n) + r_y(u_{0,k+1}^n - 2u_{0k}^n + u_{0,k-1}^n) + 10 \triangle t. \\ u_{Jk}^{n+1} &= u_{Jk}^n + r_x(u_{J+1,k}^n - 2u_{Jk}^n + u_{J-1,k}^n) + r_y(u_{J,k+1}^n - 2u_{Jk}^n + u_{J,k-1}^n) + 10 \triangle t. \\ u_{j0}^{n+1} &= u_{j0}^n + r_x(u_{j+1,0}^n - 2u_{j0}^n + u_{j-1,0}^n) + r_y(u_{j,1}^n - 2u_{j0}^n + u_{j,-1}^n). \\ u_{jK}^{n+1} &= u_{jK}^n + r_x(u_{j+1,K}^n - 2u_{jK}^n + u_{j-1,K}^n) + r_y(u_{j,K+1}^n - 2u_{jK}^n + u_{j,K-1}^n) \end{split}$$

 $\operatorname{resultando}$

$$\begin{split} u_{00}^{n+1} &= u_{00}^n + r_x(2u_{10}^n - 2u_{00}^n) + r_y(2u_{0,1}^n - 2u_{00}^n) + 10 \triangle t \\ u_{0k}^{n+1} &= u_{0k}^n + r_x(2u_{1k}^n - 2u_{0k}^n) + r_y(u_{0,k+1}^n - 2u_{0k}^n + u_{0,k-1}^n) + 10 \triangle t . \\ u_{0K}^{n+1} &= u_{0K}^n + r_x(2u_{1K}^n - 2u_{0K}^n) + r_y(-2u_{0K}^n + 2u_{0,K-1}^n) + 10 \triangle t \\ u_{jK}^{n+1} &= u_{jK}^n + r_x(u_{j+1,K}^n - 2u_{jK}^n + u_{j-1,K}^n) + r_y(-2u_{jK}^n + 2u_{j,K-1}^n) + 10 \triangle t \\ u_{JK}^{n+1} &= u_{JK}^n + r_x(-2u_{JK}^n + 2u_{J-1,K}^n) + r_y(-2u_{JK}^n + 2u_{J,K-1}^n) + 10 \triangle t \\ u_{Jk}^{n+1} &= u_{Jk}^n + r_x(-2u_{Jk}^n + 2u_{J-1,k}^n) + r_y(-2u_{JK}^n + 2u_{J,K-1}^n) + 10 \triangle t \\ u_{J0}^{n+1} &= u_{J0}^n + r_x(-2u_{J0}^n + 2u_{J-1,0}^n) + r_y(2u_{J,1}^n - 2u_{J0}^n) + 10 \triangle t \\ u_{j0}^{n+1} &= u_{j0}^n + r_x(u_{j+1,0}^n - 2u_{j0}^n + u_{j-1,0}^n) + r_y(2u_{j,1}^n - 2u_{j0}^n) + 10 \triangle t \\ \end{split}$$

Os gráficos abaixo mostram as soluções numéricas correspondendo a t = 0 e t = 0.84; foram usados $\Delta x = \Delta y = 0.05$, $\Delta t = 0.12$.

Os gráficos abaixo mostram a aproximação à solução exata ao longo das retas x = 1/2 e t = 1 quando variamos Δt .

Novamente vemos que, quando $\Delta x \in \Delta y$ estão fixos, existe um valor Δt_0 para que a solução exata Δt que produz uma melhor aproximação à solução exata, e valores Δt menores produzem resultados desastrosos. $v(x, y, t) = \frac{1}{4} - \exp(t)$

Por causa das condições de contorno que traduzem um isolamento térmico, temos que a solução exata

$$v(x,y,t) = \frac{1}{4} - \exp(-4\pi^2\nu t)\frac{\cos(2\pi x) + \cos(2\pi y)}{4} + \exp(-8\pi^2\nu t)\frac{\cos(2\pi x)\cos(2\pi y)}{4}$$

converge à superfície constante igual a 1/4 a
o $t \to \infty,$ o que pode ser observado acima.

Exemplo 8.5 : O esquema de Crank-Nicolson para o problema de difusão 2D

Considere o problema

$$\begin{array}{rll} v_t = & \nu(v_{xx} + v_{yy}) + F(x,y,t), & (x,y) \in (0,1) \times (0,1), t > 0 \\ v(x,y,0) = & f(x,y), & (x,y) \in [0,1] \times [0,1] \\ v(0,y,t) = & v(1,y,t) = 0 & , y \in (0,1), t > 0 \\ v(x,0,t) = & v(x,1,t) = 0 & , x \in (0,1), t > 0 \end{array}$$

O esquema de Crank-Nicolson para aproximação da EDP é:

$$\frac{u_{jk}^{n+1} - u_{jk}^n}{\triangle t} = \nu \left(\frac{\delta_x^2}{(\triangle x)^2} + \frac{\delta_y^2}{(\triangle y)^2} \right) \frac{u_{jk}^{n+1} + u_{jk}^n}{2} + \frac{F_{jk}^{n+1} + F_{jk}^n}{2}$$

e então temos

$$\left(1 - \frac{r_x \delta_x^2}{2} - \frac{r_y \delta_y^2}{2}\right) u_{jk}^{n+1} - \frac{\triangle t F_{jk}^{n+1}}{2} = \left(1 + \frac{r_x \delta_x^2}{2} + \frac{r_y \delta_y^2}{2}\right) u_{jk}^n + \frac{\triangle t F_{jk}^n}{2}$$

ou ainda

$$-\frac{r_y}{2}u_{j,k-1}^{n+1} - \frac{r_x}{2}u_{j-1,k}^{n+1} + (1+r_x+r_y)u_{jk}^{n+1} - \frac{r_x}{2}u_{j+1,k}^{n+1} - \frac{r_y}{2}u_{j,k+1}^{n+1} - \frac{\triangle tF_{jk}^{n+1}}{2} = +\frac{r_y}{2}u_{j,k-1}^n + \frac{r_x}{2}u_{j-1,k}^n + (1-r_x-r_y)u_{jk}^n + \frac{r_x}{2}u_{j+1,k}^n + \frac{r_y}{2}u_{j,k+1}^n + \frac{\triangle tF_{jk}^n}{2}$$

Se F = 0, escrevemos como $Au^{n+1} = Bu^n, n = 0, 1, 2, \dots$ onde

$$B = \begin{bmatrix} c & r_x/2 & r_y/2 & & & \\ r_x/2 & c & r_x/2 & r_y/2 & & & \\ & r_x/2 & c & & r_y/2 & & \\ r_y/2 & & c & r_x/2 & r_y/2 & & \\ & & r_y/2 & & r_x/2 & c & & r_y/2 \\ & & & r_y/2 & & r_x/2 & c & & r_x/2 \\ & & & & r_y/2 & & r_x/2 & c & r_x/2 \\ & & & & & r_y/2 & & r_x/2 & c & r_x/2 \\ & & & & & r_y/2 & & r_x/2 & c & \\ \end{bmatrix}$$

onde $d = 1 + r_x + r_y$, $c = 1 - r_x - r_y \in u^0$ é determinado pela condição inicial.

Exemplo 8.6 : Análise de Fourier do esquema de Crank-Nicolson para eq difusão 2D

Desconsiderando o termo não -homogêneo, temos

$$\left(1 - \frac{r_x}{2}(2\cos(\xi) - 2) - \frac{r_y}{2}(2\cos(\eta) - 2)\right)\hat{u}^{n+1} = \left(1 + \frac{r_x}{2}(2\cos(\xi) - 2) + \frac{r_y}{2}(2\cos(\eta) - 2)\right)\hat{u}^n$$

e então

$$(1 + 2r_x \operatorname{sen}^2(\xi/2) + 2r_y \operatorname{sen}^2(\eta/2)) \hat{u}^{n+1} = (1 - 2r_x \operatorname{sen}^2(\xi/2) - 2r_y \operatorname{sen}^2(\eta/2)) \hat{u}^n$$

para $n=0,1,2,\ldots$. O símbolo desse esquema numérico é

$$\rho(\xi,\eta) = \frac{1 - 2r_x \operatorname{sen}^2(\xi/2) - 2r_y \operatorname{sen}^2(\eta/2)}{1 + 2r_x \operatorname{sen}^2(\xi/2) + 2r_y \operatorname{sen}^2(\eta/2)}$$

e então claramente temos $|\rho(\xi,\eta)| \leq 1 \quad \forall \xi, \eta \in [-\pi,\pi]$ e o esquema é incondicionalmente estável na norma energia.

Tarefa: Mostre que, a exemplo do caso unidimensional, o esquema 2D de Crank-Nicolson é de segunda ordem no tempo e no espaço. Definir erro de truncamento usando $t_{n+1,2}$...

Introdução 8.3 : Esquemas ADI (Implícitos de Direção Alternada)

Para o problema de difusão unidimensional, esquemas numéricos de dois tipos foram trabalhados:

• $u^{n+1} = Qu^n, n = 0, 1, 2, \ldots$ explícitos, de mais fácil implementação numérica mas apenas condicionalmente estáveis;

• $Au^{n+1} = Bu^n, n = 0, 1, 2, \ldots$ implícitos, de implementação numérica mais De outra forma, temos elaborada mas incondicionalmente estáveis. $\left(1 - \frac{r_x \delta_x^2}{2}\right) u_{jk}^{n+1/2} = \left(1 + \frac{r_y \delta_y^2}{2}\right) u_{jk}^n$

Em problemas de difusão bidimensional, alta performance aliada a estabilidade incondicional é a marca registrada dos esquemas implicitos de direcão alternada.

A idéia, que pode ser esquematizada como abaixo,

é que a característica implícita do esquema possa ser aplicada alternadamente às variáveis espaciais $x \in y$. Como consequência, apenas sistemas lineares tridiagonais deverão ser resolvidos, possibilitando uma solução de alta performance. Além disso, a característica de estabilidade incondicional não é perdida.

Dois desses esquemas serão discutidos nesta disciplina:

- o esquema de *Peaceman-Rachford*;
- o esquema de Douglas-Rachford.

Introdução 8.4 : o Esquema de Peaceman-Rachford para a Equação de Difusão 2D

O esquema de Peaceman-Rachford para $v_t = \nu(v_{xx} + v_{yy})$ é

$$\frac{u_{jk}^{n+1/2} - u_{jk}^{n}}{\Delta t/2} = \frac{\nu}{(\triangle x)^2} \delta_x^2 \left(u_{jk}^{n+1/2} \right) + \frac{\nu}{(\triangle y)^2} \delta_y^2 \left(u_{jk}^{n} \right)$$
$$\frac{u_{jk}^{n+1} - u_{jk}^{n+1/2}}{\Delta t/2} = \frac{\nu}{(\triangle x)^2} \delta_x^2 \left(u_{jk}^{n+1/2} \right) + \frac{\nu}{(\triangle y)^2} \delta_y^2 \left(u_{jk}^{n+1} \right).$$

$$B_2 = \begin{bmatrix} 1 - r_x & r_x/2 & & \\ r_x/2 & 1 - r_x & r_x/2 & \\ & r_x/2 & 1 - r_x & r_x/2 & \\ & & \ddots & \ddots & r_x/2 \\ & & & r_x/2 & 1 - r_x \end{bmatrix}$$

• Condição inicial:

$$u_{jk}^0 = f(j \triangle x, k \triangle y),$$

 $j = 0, 1, 2, \dots, J; k = 0, 1, 2, \dots, K.$

Condições de contorno: Considerando uma CC de Dirichlet em x = 0, a implementação mais imediata é

$$u_{0k}^{n+1/2} = g(0, k \triangle y, (n+1/2) \triangle t)$$

Alternativamente, considerando

$$\left(1 - \frac{r_x \delta_x^2}{2}\right) u_{jk}^{n+1/2} = \left(1 + \frac{r_y \delta_y^2}{2}\right) u_{jk}^n$$
$$\left(1 + \frac{r_x \delta_x^2}{2}\right) u_{jk}^{n+1/2} = \left(1 - \frac{r_y \delta_y^2}{2}\right) u_{jk}^{n+1}$$

e adicionando implica

$$u_{jk}^{n+1/2} = \frac{1}{2} \left(1 - \frac{r_y \delta_y^2}{2} \right) u_{jk}^{n+1} + \frac{1}{2} \left(1 + \frac{r_y \delta_y^2}{2} \right) u_{jk}^n$$

e vemos que uma expressão alternativa é

$$u_{0k}^{n+1/2} = \frac{1}{2} \left(1 - \frac{r_y \delta_y^2}{2} \right) g(0, k \triangle y, (n+1) \triangle t) + \frac{1}{2} \left(1 + \frac{r_y \delta_y^2}{2} \right) g(0, k \triangle y, n \triangle t)$$

Pode-se mostrar que a expressão acima aproxima a expressão mais imediata com um erro de ordem $(\Delta t)^2$. Dessa forma, ambas as expressões podem ser usadas para implementação da CC em x = 0.

Conclusões análogas são derivadas para as demais CC.

 \bullet Considerando uma CC de Neumann $v_y(x,0,t)=g^N(x,t)$ em y=0: Aproximação de primeira ordem: assumimos

$$u_{j0}^{n+1} = u_{j1}^{n+1} - \triangle t g^N (j \triangle x, (n+1) \triangle t)$$

e eliminamos u_{i0}^{n+1} das equações .

Aproximação de segunda ordem: introduzimos $u_{j,-1}^{n+1}$ tal que

$$u_{j,-1}^{n+1} = u_{j,1}^{n+1} - 2 \triangle y g^N(j \triangle x, (n+1) \triangle t)$$

extendemos as equações vindas da EDP para k = 0 e eliminamos $u_{j,-1}^{n+1}$ usando a relação acima.

Um enfoque alternativo será proposto na lista de exercícios.

Considere o problema de valores iniciais e condições de contorno

$$\begin{array}{rcl} v_t = & \nu(v_{xx} + v_{yy}), & (x,y) \in (0,1) \times (0,1), t > 0 \\ v(x,y,0) = & f(x,y), & (x,y) \in [0,1] \times [0,1] \\ v(0,y,t) = & v(1,y,t) = 0 & , y \in (0,1), t > 0 \\ v(x,0,t) = & v(x,1,t) = 0 & , x \in (0,1), t > 0 \end{array}$$

onde $f(x,y) = \operatorname{sen}(\pi x)\operatorname{sen}(2\pi y)$. A condição de compatibilidade é claramente satisfeita.

As figuras abaixo mostram as soluções numéricas do problema acima, via esquema de Peaceman-Rachford, para t=0 et=0.4. Foi usado $\bigtriangleup x=\bigtriangleup y=0.01$, $\bigtriangleup t=0.1$ e $\nu=1/6.$

Introdução 8.5 : Métodos de Fatorização Aproximada

Considere o esquema 2D de Crank-Nicolson

$$\left(1 - \frac{r_x \delta_x^2}{2} - \frac{r_y \delta_y^2}{2}\right) u_{jk}^{n+1} = \left(1 + \frac{r_x \delta_x^2}{2} + \frac{r_y \delta_y^2}{2}\right) u_{jk}^n$$

que já mostramos (exercício-lista) ser de segunda ordem no tempo e no espaço. A idéia é reescrever o lado esquerdo, usando a fatorização

$$\left(1 - \frac{r_x \delta_x^2}{2}\right) \left(1 - \frac{r_y \delta_y^2}{2}\right) u_{jk}^{n+1} \tag{\dagger}$$

que é apenas aproximada pois estaríamos introduzindo o termo

$$\frac{r_x r_y}{4} \delta_x^2 \delta_y^2(u_{jk}^{n+1})$$

ao qual corresponderia, em termos de análise infinitesimal, uma parcela

$$\frac{(\triangle t)^2}{4} \frac{\partial^4 u(x_j, y_k, t_{n+1/2})}{\partial^2 x \partial^2 y} + O((\triangle x)^4, (\triangle y)^4, (\triangle t)^3).$$

Dessa forma, como (†) deve ser dividida por Δt na análise de consistência, vemos que o esquema

$$\left(1 - \frac{r_x \delta_x^2}{2}\right) \left(1 - \frac{r_y \delta_y^2}{2}\right) u_{jk}^{n+1} = \left(1 + \frac{r_x \delta_x^2}{2} + \frac{r_y \delta_y^2}{2}\right) u_{jk}^n$$

tem a mesma ordem espacial de Crank-Nicolson, mas ordem 1 no tempo. Entretando, se adicionarmos o termo

$$\frac{r_x r_y}{4} \delta_x^2 \delta_y^2(u_{jk}^n)$$

no lado direito e fatorizarmos analogamente, obtemos um esquema numérico que difere de Crank-Nicolson por um termo

$$\frac{r_x r_y}{4} \delta_x^2 \delta_y^2 (u_{jk}^{n+1} - u_{jk}^n).$$

Esse termo é de ordem 3 no tempo e ordem superior no espaço, e dessa forma o esquema resultante

$$\left(1 - \frac{r_x \delta_x^2}{2}\right) \left(1 - \frac{r_y \delta_y^2}{2}\right) u_{jk}^{n+1} = \left(1 + \frac{r_x \delta_x^2}{2}\right) \left(1 + \frac{r_y \delta_y^2}{2}\right) u_{jk}^n,$$

que é o esquema de Peaceman Rachford, possui a mesma ordem de consistência que o esquema 2D de Crank-Nicolson.

Dessa forma, o esquema de Peaceman Rachford é a fatorização aproximada do esquema de Crank-Nicolson.

Exemplo 8.8 : o Esquema de Douglas-Rachford para Equação de Difusão 2D

O esquema de Douglas-Rachford é a fatorização aproximada do esquema implícito de Euler

$$(1 - r_x \delta_x^2 - r_y \delta_y^2) u_{jk}^{n+1} = u_{jk}^n.$$

A fatorização aproximada nos dá

$$(1 - r_x \delta_x^2)(1 - r_y \delta_y^2) u_{jk}^{n+1} = u_{jk}^n$$

e então o termo

$$r_x r_y \delta_x^2 \delta_y^2 u_{jk}^{n+1}$$

foi adicionado. A exemplo do que fizemos para obter o esquema de Peaceman-Rachford a partir do de Crank-Nicolson, contra-adicionamos o termo

$$r_x r_y \delta_x^2 \delta_y^2 u_{jk}^n$$

no lado direito da equação, e temos

$$(1 - r_x \delta_x^2)(1 - r_y \delta_y^2) u_{jk}^{n+1} = (1 + r_x r_y \delta_x^2 \delta_y^2) u_{jk}^n.$$

A forma mais usada do esquema de **Douglas-Rachford** é

$$(1 - r_x \delta_x^2) u_{jk}^{n+1/2} = (1 + r_y \delta_y^2) u_{jk}^n (1 - r_y \delta_y^2) u_{jk}^{n+1} = u_{jk}^{n+1/2} - r_y \delta_y^2 u_{jk}^n.$$

Solução Numérica de Equações Hiperbólicas 9

Equações ou sistemas de equações hiperbólicas governam fenômenos importantes como fluxos aerodinâmicos, incluindo fluxos através de meio porosos e fluxos atmosféricos.

Introdução 9.1 : Fluxos Unidimensionais

Um sistema linear geral de equações parciais unidimensionais à coeficientes constantes pode ser escrito

$$V_t = Av_x, x \in \mathbb{R}, t > 0 \tag{46}$$

onde v é um vetor de incógnitas e A é uma matriz $K \times K$ de coeficientes. Se A é uma matriz diagonalizável, então dizemos que o sistema acima é fortemente hiperbólico. Neste caso, existe uma matriz S de autovetores tal que $A = S^{-1}\Lambda S$, onde Λ é uma matriz diagonal. Assim,

$$Sv_t = SAv_x = \Lambda Sv_x$$

e então , sendo u(x,t) = Sv(x,t), temos

$$\frac{\partial u_i}{\partial t} = \lambda_i \frac{\partial u_i}{\partial x}, i = 0, 1, \dots, K$$

onde λ_i são os elementos diagonais de Λ (autovalores de A).

Introdução 9.2 : Curvas Características

Considere o problema da equação de onda unidimensional

$$v_t + av_x = 0, \quad x \in \mathbb{R}, t > 0$$
$$v(x, 0) = f(x), \quad x \in \mathbb{R}$$

Vemos que a primeira equação pode ser escrita como

$$\begin{bmatrix} a & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_t \end{bmatrix} = 0$$

Ou seja, a solução é constante ao longo das retas x - at = c, onde $c \in \mathbb{R}$ são constantes. Dessa forma, a solução exata é $v(x,t) = f(x-at), x \in \mathbb{R}, t \ge 0$.

Definição 9.1 O domínio de dependência analítico da solução em um ponto (x,t)(no domínio da EDP) é o ponto $s_0 = x - at$.

Introdução 9.3 : Solução Numérica de $v_t + av_x = 0$

Esquemas unidimensionais:

esquema	fórmula	símbolo	estabilidade
FTFS	$u_k^{n+1} = u_k^n - R(u_{k+1}^n - u_k^n)$	$1 + 2R \operatorname{sen}^2(\xi/2) - iR \operatorname{sen}(\xi)$	$-1 \le R \le 0$
FTBS	$u_k^{n+1} = u_k^n - R(u_k^n - u_{k-1}^n)$	$1 - 2R \operatorname{sen}^2(\xi/2) - iR \operatorname{sen}(\xi)$	$0 \le R \le 1$
FTCS	$u_k^{n+1} = u_k^n - (R/2)(u_{k+1}^n - u_{k-1}^n)$	$1 - iR \mathrm{sen}\left(\xi\right)$	R = 0
BTES	$(1-R)u^{n+1} + Ru^{n+1} - u^n$	1	$R \leq 0$ ou
DIID	$\left[\begin{array}{ccc} (1 & n)u_k & (1 & n)u_{k+1} - u_k \end{array} \right]$	$1 - 2R \operatorname{sen}^2(\xi/2) + iR \operatorname{sen}(\xi)$	$R \ge 1$

Implementação numérica:

Apesar de o problema ser definido numa região infinita $[0, +\infty) \times [0, +\infty]$ OU $(-\infty, 0] \times [0, +\infty]$, a implementação numérica assumirá $(x, t) \in [0, K \triangle x] \times [0, N \triangle t]$ ou $(x,t) \in [-K \triangle x, 0] \times [0, N \triangle t].$ Estrutura de dados : v(n,k), n = 1, 2, 3, ..., N + 1; k = 1, 2, 3, ..., K + 1.

Definição 9.2 O domínio de dependência de um esquema numérico em um ponto $(k \triangle x, n \triangle t)$ da discretização é o intervalo ao longo da condição inicial que é usado na computação de u_k^n .

Por exemplo: para o esquema FTFS, o domínio de dependência numérica D_n de um ponto $(k \Delta x, n \Delta t)$ é o intervalo $[k \Delta x, (k+n) \Delta x]$.

Por exemplo: para o esquema FTBS, o domínio de dependência numérica D_n de um ponto $(k \triangle x, n \triangle t)$ é o intervalo $[(k - n) \triangle x, k \triangle x]$.

Exemplo 9.1 : Implementação do esquema FTBS para $v_t + av_x = 0$

Considere o problema

 $v_t + av_x = 0, \quad 0 < x < 3, t > 0$ $v(x, 0) = f(x), \quad 0 \le x \le 3$ $v(0, t) = g(t), \quad t \ge 0$

onde a = 1/6, $f(x) = \operatorname{sen}(\pi x)$, $g(t) \equiv 0$. Condição de compatibilidade:

v(0,0) = f(0) = g(0)

que é claramente verificada.

Inicialização via CI: $u_k^0 = f(x_k), k = 0, 1, ..., K$. Inicialização via CC: $u_0^n = g(t_n), n = 0, 1, ..., N$. Iteração principal: for n = 0: N may 1

for
$$n = 0$$
: $N_max - 1$
for $k = 1$: K_max
 $u_k^{n+1} = (1 - R)u_k^n + Ru_{k-1}^n$
end

 end

As figuras abaixo mostram o resultado da implementação numérica (Matlab) do esquema acima, para a = 1/6, $\Delta t = \Delta x = 1/10$.

Uma equação diferencial parcial e um esquema numérico associado são ditos satisfazerem a condição de Courant-Friedrichs-Levy (CFL) se para todo ponto P do domínio da EDP temos que o domínio de dependência analítica $D_a(P)$ está contido

no domínio de dependência numérica $D_n(P)$.

Lema 9.1 : Aplicação da condição de CFL

A condição de Courant-Friedrichs-Levy é necessária para a convergência de um esquema numérico.

Justificativa: Caso contrário, existe um ponto P tal que $D_a(P) \not\subseteq D_n(P)$. Seja $Q \in D_a(P)$ tal que $Q \notin D_n(P)$. A solução analítica no ponto P depende da informação contida em uma vizinhança do ponto Q, mas essa informação nunca será captada pelo esquema numérico, e portanto não poderá haver convergência.

Consequência: podemos usar CFL para determinar condições necessárias para a convergência de esquemas consistente, isto é, temos uma ferramenta para encontrar condições necessárias para a estabilidade.

Por exemplo, para o esquema FTBS e um ponto $(x,t) = (k \triangle x, n \triangle t)$ temos $D_a(x,t) = \{s_0\}$, onde $s_0 = k \triangle x - an \triangle t\} = (k - Rn) \triangle x$. Dessa forma, é necessário que

$$(k-n) \triangle x \le (k-Rn) \triangle x \le k \triangle x$$

e ent $\tilde{a}o$

$$k-n \leq k-Rn \leq k \Rightarrow -n \leq -Rn \leq 0 \Rightarrow -1 \leq -R \leq 0 \Rightarrow 0 \leq R \leq 1$$

como já sabemos.

Introdução 9.4 : Esquema de Lax-Wendroff para $v_t + av_x = 0$

A proposta é modificar o esquema FTCS da tabela dada anteriormente, de maneira a estabilizá-lo.

Estratégia:

$$v_{tt} = (-av_x)_t = -av_{xt} = -av_{tx} = -a(-av_x)_x = a^2 v_{xx}$$

Equacionamento e análise de consistência:

$$\begin{aligned} v(x_k, t_{n+1}) &= v(x_k, t_n) + v_t(x_k, t_n) \triangle t + v_{tt}(x_k, t_n) \frac{(\triangle t)^2}{2} + O((\triangle t)^3) \\ v(x_k, t_{n+1}) &= v(x_k, t_n) - av_x(x_k, t_n) \triangle t + a^2 v_{xx}(x_k, t_n) \frac{(\triangle t)^2}{2} + O((\triangle t)^3) \\ v(x_k, t_{n+1}) &= v(x_k, t_n) - a \left(\frac{v(x_{k+1}, t_n) - v(x_{k-1}, t_n)}{2\triangle x} + O((\triangle x)^2) \right) \triangle t + \\ a^2 \left(\frac{v(x_{k+1}, t_n) - 2v(x_k, t_n) + v(x_{k-1}, t_n)}{(\triangle x)^2} + O((\triangle x)^2) \right) \frac{(\triangle t)^2}{2} + O((\triangle t)^3) \end{aligned}$$

Dessa forma, desconsiderando-se erros de arredondamento, o esquema numérico

$$u_k^{n+1} = u_k^n - \frac{R}{2}\delta^1(u_k^n) + \frac{R^2}{2}\delta^2(u_k^n),$$

onde $R = a \triangle t / \triangle x$, possui um erro de truncamento

$$\tau_k^n = \frac{1}{\triangle t} \left[O((\triangle x)2\triangle t, (\triangle x)^2(\triangle t)^2, (\triangle t)^3) \right]$$

ou seja, de primeira ordem no tempo e segunda no espaço. Análise de estabilidade: Aplicando a TDF,

$$\hat{u}^{n+1} = \left(1 - \frac{R}{2}(2i\mathrm{sen}\,(\xi)) + \frac{R^2}{2}(-2 + 2\cos(\xi))\right)\hat{u}^n,$$

ou seja,

$$\rho(\xi) = 1 - 2R^2 \operatorname{sen}^2(\xi/2) - iR \operatorname{sen}(\xi).$$

Vemos que

$$|\rho(\xi)|^2 = (1 - 2R^2 \operatorname{sen}^2(\xi/2))^2 + R^2 \operatorname{sen}^2(\xi)$$
$$|\rho(\xi)|^2 = 1 - 4R^2 \operatorname{sen}^2(\xi/2) + 4R^4 \operatorname{sen}^4(\xi/2) + R^2 \operatorname{sen}^2(\xi)$$

e como sen²(ξ) = 4sen²(ξ /2) cos(ξ /2) temos

$$-4\mathrm{sen}^{2}(\xi/2) + \mathrm{sen}^{2}(\xi) = -4\mathrm{sen}^{2}(\xi/2) + 4\mathrm{sen}^{2}(\xi/2)\cos^{2}(\xi/2) = -4\mathrm{sen}^{2}(\xi/2)(1 - \cos^{2}(\xi/2)) = -4\mathrm{sen}^{4}(\xi/2)$$

e assim

$$|\rho(\xi)|^2 = 1 - 4R^2 \operatorname{sen}^4(\xi/2) + 4R^4 \operatorname{sen}^4(\xi/2).$$

Como possíveis máximos estão em $\xi 0, \pm \pi$, calculamos

$$|\rho(0)|^2 = 1$$
$$|\rho(\pm \pi)|^2 = (1 - 2R^2)^2$$

e dessa forma concluímos que o esquema de Lax-Wendroff é estável na norma-energia se e somente se $-1 \le 1 - 2R^2$, isto é, $R^2 \le 1$, isto é, $|R| \le 1$.

Introdução 9.5 : o Esquema de Crank-Nicolson para Equação de Onda 1D

$$\begin{aligned} \frac{u_k^{n+1} - u_k^n}{\Delta t} + a \left(\frac{u_{k+1}^{n+1} - u_{k-1}^{n+1}}{4\Delta x} + \frac{u_{k+1}^n - u_{k-1}^n}{4\Delta x} \right) &= 0\\ u_k^{n+1} - u_k^n + R \left(\frac{u_{k+1}^{n+1} - u_{k-1}^{n+1}}{4} + \frac{u_{k+1}^n - u_{k-1}^n}{4} \right) &= 0\\ - \frac{R}{4}u_{k-1}^{n+1} + u_k^{n+1} + \frac{R}{4}u_{k+1}^{n+1} &= \frac{R}{4}u_{k-1}^n + u_k^n - \frac{R}{4}u_{k+1}^n \end{aligned}$$

Aplicando a TDF, temos

$$\left(1 + \frac{R}{4}(2i\mathrm{sen}\left(\xi\right))\right)\hat{u}^{n+1} = \left(1 - \frac{R}{4}(2i\mathrm{sen}\left(\xi\right))\right)\hat{u}^{n}$$
$$\rho(\xi) = \frac{1 - iR\mathrm{sen}\left(\xi\right)/2}{1 + iR\mathrm{sen}\left(\xi\right)/2}$$

de onde concluímos estabilidade marginal incondicional, pois $|\rho(\xi)|^2 \equiv 1$.

Introdução 9.6 : Equações Parciais Hiperbólicas 2D

A equação diferencial parcial hiperbólica em duas dimensões é

$$v_t + av_x + bv_y = 0$$

que possui uma condição inicial do tipo v(x, y, 0) = f(x, y).

Uma solução desse problema inicial é v(x, y, t) = f(x - at, y - bt).

A solução é então constante ao longo da reta $x-at=x_0\;,\;y-at=y_0,$ e novamente temos uma propagação .

Dependendo da direção dessa reta (sinais de $a \in b$), condições de contorno como, por exemplo,

$$\begin{aligned} v(x,0,t) &= g_1(x,t) \quad x \in [0,+\infty) \quad t \ge 0 \\ v(0,y,t) &= g_2(y,t) \quad y \in [0,+\infty) \quad t \ge 0 \end{aligned}$$

devem ser adotadas para domínios espaciais finitos ou semi-finitos.

Exemplo 9.2 : Esquema FTBS para $v_t + av_x + bv_y = 0$

Considere o problema

 $\begin{array}{ll} v_t + av_x + bv_y = 0, & (x,y) \ge 0, t > 0 \\ v(x,y,0) = f(x,y), & x \ge 0, y \ge 0 \\ v(x,0,t) = g_1(x,t) & x \ge 0, t \ge 0 \\ v(0,y,t) = g_2(y,t) & y \ge 0, t \ge 0 \end{array}$

O esquema de Crank-Nicolson para equação de onda unidimensional:

onde a = b = 2, $f(x, y) = \operatorname{sen}(\pi x/3) \operatorname{sen}(\pi y/4)$, $g_1(x, t) = g_2(y, t) \equiv 0$.

O esquema numérico usa aproximações de primeira ordem; avançada para v_t e retrasadas para v_x e v_y :

$$\frac{u_{jk}^{n+1}-u_{jk}^n}{\bigtriangleup t} + a\frac{u_{jk}^n-u_{j-1,k}^n}{\bigtriangleup x} + b\frac{u_{jk}^n-u_{j,k-1}^n}{\bigtriangleup y}$$

e então definimos

$$R_x = a \frac{\triangle t}{\triangle x}, R_y = b \frac{\triangle t}{\triangle y}$$

para escrever na forma compacta

$$u_{jk}^{n+1} = (1 - R_x \delta_{x-} - R_y \delta_{y-}) u_{jk}^n.$$

Aplicando a TDF em duas dimensões , temos

$$\rho(\xi,\eta) = 1 - R_x(1 - e^{-i\xi}) - R_y(1 - e^{-i\eta})$$

e assim

$$|\rho(\xi,\eta)|^2 = \left(1 - 2R_x \operatorname{sen}^2(\xi/2) - 2R_y \operatorname{sen}^2(\eta/2)\right)^2 + (R_x \operatorname{sen}(\xi) + R_y \operatorname{sen}(\eta))^2.$$

Procurando por pontos de máximo em $[-\pi, \pi] \times [-\pi, \pi]$:

$$\frac{\partial |\rho|^2}{\partial \xi} = (1 - 2R_x \operatorname{sen}^2(\xi/2) - 2R_y \operatorname{sen}^2(\eta/2))(-2R_x) \operatorname{sen}(\xi/2) \cos(\xi/2) + (R_x \operatorname{sen}(\xi) + R_y \operatorname{sen}(\eta))R_x \cos(\xi) = 0$$
$$\frac{\partial |\rho|^2}{\partial \eta} = (1 - 2R_x \operatorname{sen}^2(\xi/2) - 2R_y \operatorname{sen}^2(\eta/2))(-2R_y) \operatorname{sen}(\eta/2) \cos(\eta/2) + (R_x \operatorname{sen}(\xi) + R_y \operatorname{sen}(\eta))R_y \cos(\eta) = 0$$

ou seja

$$-(1 - 2R_x \operatorname{sen}^2(\xi/2) - 2R_y \operatorname{sen}^2(\eta/2)) \operatorname{sen}(\xi) + (R_x \operatorname{sen}(\xi) + R_y \operatorname{sen}(\eta)) \cos(\xi) = 0$$

$$-(1 - 2R_x \operatorname{sen}^2(\xi/2) - 2R_y \operatorname{sen}^2(\eta/2)) \operatorname{sen}(\eta) + (R_x \operatorname{sen}(\xi) + R_y \operatorname{sen}(\eta)) \cos(\eta) = 0$$

o que implica

$$(R_x \cos(\xi) - 1 + 2R_x \sin^2(\xi/2) + 2R_y \sin^2(\eta/2)) \sin(\xi) + R_y \cos(\xi) \sin(\eta) = 0 R_x \cos(\eta) \sin(\xi) + (R_y \cos(\eta) - 1 + 2R_x \sin^2(\xi/2) + 2R_y \sin^2(\eta/2)) \sin(\eta) = 0$$

e possíveis máximos existem em $(0,0), (0,\pm\pi), (\pm\pi,0)$ e $(\pm\pi,\pm\pi),$ entre outros. Entretanto

$$|\rho(0,0)| = 1, |\rho(0,\pm\pi)|^2 = (1-2R_y)^2, \ |\rho(\pm\pi,0)|^2 = (1-2R_x)^2$$
$$|\rho(\pm\pi,\pm\pi)|^2 = (1-2R_x-2R_y)^2$$

e condições necessárias para a convergência são :

$$\begin{split} |1 - 2R_x| &\leq 1 \Leftrightarrow 0 \leq R_x \leq 1 \\ |1 - 2R_y| \leq 1 \Leftrightarrow 0 \leq R_y \leq 1 \\ |1 - 2R_x - 2R_y| \leq 1 \Leftrightarrow 0 \leq R_x + R_y \leq 1 \end{split}$$

e portanto $0 \le R_x + R_y \le 1$ é condição necessária para a estabilidade e portanto para a convergência desse esquema.

As figuras abaixo mostram o resultado da implementação numérica (Matlab) para os instantes t = 0 e t = 2.0, respectivamente. Foi usado $\Delta x = \Delta y = 1/4$, $\Delta t = 1/20$.

Definição 9.4 O domínio de dependência numérica da solução (depende do esquema numérico) em um ponto $(j \triangle x, k \triangle y, n \triangle t)$ é o menor retângulo de \mathbb{R}^2 que contém todos os pontos das CI dos quais a computação de u_{jk}^n depende.

Lema 9.2 : Aplicação da condição de CFL em duas dimensões

A condição de Courant-Friedrichs-Levy é necessária para a convergência de um esquema numérico para equação parcial hiperbólica bidimensional

Justificativa: a mesma.

Exemplo:temos 3 categorias a distinguir:

 $\bullet u_{jk}^{n+1} = a_1 u_{j-1,k}^n + a_2 u_{j,k-1}^n + a_3 u_{jk}^n + a_4 u_{j+1,k}^n + a_5 u_{j,k+1}^n$ $\text{com } D_n = [(j-n) \triangle x, (j+n) \triangle x] \times [(k-n) \triangle y, (k+n) \triangle y]$ CFL implica

> $(j-n)\triangle x \le (x-at) \le (j+n)\triangle x$ $(k-n)\triangle y \le (y-bt) \le (k+n)\triangle y$

implica

$$(j-n) \triangle x \le (j-R_x n) \triangle x \le (j+n) \triangle x$$
$$(k-n) \triangle y \le (k-R_y n) \triangle y \le (k+n) \triangle y$$

implica

$$-n \leq -R_x n \leq n \Leftrightarrow -1 \leq R_x \leq 1$$
$$-n \leq -R_y n \leq n \Leftrightarrow -1 \leq R_y \leq 1$$
$$\bullet u_{jk}^{n+1} = a_3 u_{jk}^n + a_4 u_{j+1,k}^n + a_5 u_{j,k+1}^n$$
$$\operatorname{com} D_n = [j \triangle x, (j+n) \triangle x] \times [k \triangle y, (k+n) \triangle y].$$
Analogamente, CFL implica $-1 \leq R_x \leq 0, -1 \leq R_y \leq 0.$
$$\bullet u_{jk}^{n+1} = a_1 u_{j-1,k}^n + a_2 u_{j,k-1}^n + a_3 u_{jk}^n$$
$$\operatorname{com} D_n = [(j-n) \triangle x, j \triangle x] \times [(k-n) \triangle y, k \triangle y].$$
Analogamente, CFL implica $0 \leq R_x \leq 1, 0 \leq R_y \leq 1.$

Introdução 9.7 : Um esquema ADI para $v_t + av_x + bv_y = 0$

Considere o esquema localmente unidimensional para $v_t + av_x + bv_y = 0$:

$$(1 + R_x \delta_x^0) u_{jk}^{n+1/2} = u_{jk}^n (1 + R_y \delta_y^0) u_{jk}^{n+1} = u_{jk}^{n+1/2}$$

Exercício: mostre que esse esquema é consistente de primeira ordem no tempo e segunda no espaço.

Aplicando a TDF em

$$\left(1 + R_x \delta_x^0\right) \left(1 + R_y \delta_y^0\right) u_{jk}^{n+1} = u_{jk}^n$$

temos

e assim

$$(1 + iR_x \operatorname{sen}(\xi))(1 + iR_y \operatorname{sen}(\eta))\hat{u}^{n+1} = \hat{u}^n$$

 $\rho(\xi) = \frac{1}{(1 + iR_x \operatorname{sen}(\xi))(1 + iR_y \operatorname{sen}(\eta))}$

que verifica

$$|\rho(\xi)|^2 = \frac{1}{(1 + R_x^2 \operatorname{sen}^2(\xi))(1 + R_y^2 \operatorname{sen}^2(\eta))}$$

de onde a estabilidade incondicional é concluída.

Introdução 9.8 : o Esquema de Beam-Warming para $v_t + av_x + bv_y = 0$

O esquema de Beam-Warming para $v_t + av_x + bv_y = 0$ é o resultado da fatorização aproximada aplicada ao esquema bidimensional de Crank-Nicolson

$$\frac{u_{jk}^{n+1} - u_{jk}^n}{\triangle t} + \frac{a}{2\triangle x}\delta_x^1(u_{jk}^{n+1} + u_{jk}^n) + \frac{b}{2\triangle y}\delta_y^1(u_{jk}^{n+1} + u_{jk}^n) = 0$$

 \mathbf{ou}

$$\left(1 + \frac{R_x \delta_x^1}{2} + \frac{R_y \delta_y^1}{2}\right) u_{jk}^{n+1} = \left(1 - \frac{R_x \delta_x^1}{2} - \frac{R_y \delta_y^1}{2}\right) u_{jk}^n .$$

Resulta então

$$\left(1+\frac{R_x}{2}\delta_x^1\right)\left(1+\frac{R_y}{2}\delta_y^1\right)u_{jk}^{n+1} = \left(1-\frac{R_x}{2}\delta_x^1\right)\left(1-\frac{R_y}{2}\delta_y^1\right)u_{jk}^n.$$

Esse esquema é comumente usado na forma:

$$\begin{pmatrix} 1 + \frac{R_x}{2}\delta_x^1 \end{pmatrix} u_{jk}^* = \begin{pmatrix} 1 - \frac{R_x}{2}\delta_x^1 \end{pmatrix} \begin{pmatrix} 1 - \frac{R_y}{2}\delta_y^1 \end{pmatrix} u_{jk}^n \\ \begin{pmatrix} 1 + \frac{R_y}{2}\delta_y^1 \end{pmatrix} u_{jk}^{n+1} = u_{jk}^*$$

Aplicando a TDF

$$\begin{pmatrix} 1 + \frac{R_x}{2}i\mathrm{sen}\left(\xi\right) \end{pmatrix} \hat{u}^* = \left(1 - \frac{R_x}{2}i\mathrm{sen}\left(\xi\right)\right) \left(1 - \frac{R_y}{2}i\mathrm{sen}\left(\eta\right)\right) \hat{u}^n \\ \left(1 + \frac{R_y}{2}i\mathrm{sen}\left(\eta\right)\right) \hat{u}^{n+1} = \hat{u}^*$$

e então

$$\rho(\xi,\eta) = \frac{(1 - iR_x \operatorname{sen}(\xi)/2)(1 - iR_y \operatorname{sen}(\eta)/2)}{(1 + iR_x \operatorname{sen}(\xi)/2)(1 + iR_y \operatorname{sen}(\eta)/2)}$$

que claramente verifica $|\rho(\xi,\eta)|\equiv 1,$ e temos estabilidade marginal incondicional.

10 Solução numérica de equações elípticas