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Bimeromorphic Invariants of Foliations

Abstract

Let F be a singular holomorphic foliation of a compact complex surface M. A bimero-
morphic transformation ¢ : N — M is given by a biholomorphism PN N-L > M-5,
where ¥ and § are analytic subsets and the basic example is the blowing-up of a point p € M.

In this work are defined numerical bimeromorphic invariants of foliations. Formulas for
computation and geometrical interpretations are given for the invariant g(F), a kind of
geometrical genus of the foliation.

If 7 is a foliation of the projective plane, then g{F) is a function of the degree of the
foliation and of local indices of the singularities.

In the case F has a rational first integral, are established inequalities between g(F) and
the geometrical genus g(C) of a generic invariant compact curve.

For a generalized curve F, g(F) is a topological invariant.

It is also studied the behavior of the bimeromorphic invariant x(F) := 2x(Op) — 2g9(F)
under pullback of the foliation by generically finite maps.

Resumo

Seja F uma folheagdo holomorfa singular de uma superficie compacta complexa M. Uma
transformagao bimeromorfa ¢ : N — M ¢é definida como um biholomorfismo $n-x: N -
2 —+ M - S, onde T e S sdo subconjuntos analiticos. O exemplo bésico é a explosdo de um
ponto p € M. ,

Neste trabalho sdo definidos invariantes numéricos das folheacdes por transformagoes
bimeromorfas. O invariante g(F) ¢ o andlogo para folheagies do género geométrico de curvas,
sendo descrito por férmulas e em interpretagdes geométricas.

Se F € uma folheacdo do plano projetivo, entdo g(F) é calculado em fungdo do grau da
folheagdo e de indices associados s singularidades.

No caso em que F admite uma integral primeira racional, so provadas desigualdades
entre g(F) e o género geométrico de uma curva invariante irredutivel e genérica.

Se F é uma curva generalizada, entdo g{(F) é um invariante topoldgico.

Também se estuda o comportamento do invariante bimeromorfo x(F) := 2x(© M) —29(F),
quando se considera o “pullback” da folheagdo por aplicacdes genericamente finitas.
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1 Introduction

This work is concerned with holomorphic foliations with isolated singularities of compact
complex regular surfaces M (dimcM = 2). A bimeromorphic transformation ¢ : N - M
is a biholomorphism ¢| y_x : N — 3 = M — 5, where % and S are analytic subsets. The
basic example is the blowing up of a point p € M, where § = {p} and T is an embedded
Riemann sphere. Besides the notion of transformed foliation by a blowing up, we will consider
the transformed foliation G = ¢*(F) by any bimeromorphic transformation ¢, that is, the
holomorphic foliation with isolated singularities of NV extending (¢ y—x)*(F)| ar-s)-

Several indices are associated to the singularities of foliations [BB], [CS], [GSV] [LN1],
[Su] and the finite sums of the different indices along compact curves of the surface or along
all the finite singular set are basic tools for the global theory of foliations [LN1], [Brl]. Such
sums of indices are not invariant under bimeromorphic transformations of the surfaces. On
the other hand, the group of birational transformations ¢ : M -+ M of a ruled surface
M (i.e., surfaces birationally equivalent to the product N = C' x CP!, with C a compact
Riemann surface} is much larger than the group of automorphisms (for the projective plane
CP? it is the Cremona group) and ruled surfaces appear in the study of complex differential
equations as natural compactifications [LN2]. These are some of the motivations for the
study of bimeromorphic global properties of the foliations.

For instance, when the surface M is the projective plane CP?, a foliation F can be given
in homogeneous coordinates (zp : z1 : z2) by a l-form ) = Z,?:OF;;(ZL‘O 21 ¢ ze)dz;, with
F; € Clzo,z1,%2] homogeneous, ged (Fy, Fi, Fz) = 1, with the same degree d = d(F;) and
verifying Efzo z;F; = 0. The degree d(F) is defined as the sum of order of tangencies between
JF and a non invariant projective line and d{F) = d(F;) — 1. A bimeromorphic transformation
T : CP? — CP? is a birational transformation and amounts to introduce new homogeneous
coordinates (wy : wy : we) verifying, in a Zariski open subset of CP?,

{ (wp :wy :wy) = (Qolzo : 21 : z2) : Qizo & 21 : 22) : Qoo : 31 :2))

(zo : w1 ) = (Polwo : wy : wa) : Pr{wg t wy s wa) : Po(wp s wy @ wa)),

with @4, F; homogeneous polynomials with the same degree D. In general the degree of
(I~1)*(F) depends on d(¥) := D and for this reason d(F) is not a birational invariant.

Given a foliation F in M with finite set of singularities Sing(F), let {i4;} be an open
covering of M in which F U, 8 represented by holomorphic vector fields {X;} with isolated
zeros, verifying X; = fUXJ, fiy € O*U; NU;), ifU; NU; # B. Then the tangent bundle of
F in M, denoted by Tz, is defined (up to isomorphism) by the transition functions fm1 Its
dual bundle is denoted by T;_-

A reduced foliation F associated to F is a foliation having only reduced singularities in
the sense of [S], obtained from F by means of a finite sequence of blowing ups o : M — M.
With these notations, the first result is (Theorem 3.1.1)

Theorem A: Let F be a singular holomorphic foliation of a compact complex surface
M. Let F in M be any reduced foliation associoted to F. Then the dimensions

hj(T%) = dimg HI (M, T:) §=012
do not depend on the particular reduced foliation F and are bimeromorphic invariants of F

under bimeromorphic transformations T : M — N between non-singular surfaces.
Along this work, we give geometric interpretations and formulas for the bimeromorphic



invariants )

g(F) = > (=1)7h7 (T%) and x(F):= 2x(Oum) — 29(F).
7=0

When F is given in U; by w; == 0, with w; a holomorphic 1-form with isolated singularities
verifying w; = giywy, if Us N U; 7 O, then the normal bundle Nr is defined (up to isomor-
phisms) by transition functions g;;. For any line bundle L of M, ¢;(L) denotes the first Chern
class. For a pair of line bundles L, L', we identify the cup product ¢;(L) - ¢; (L/) € HY(M, Z)
with the integer number < ¢;(L) - 1 (L), [M] >, where [M] € Hy(M,Z) is the fundamental
class of M. We prove (Theorem 3.2.3):

Theorem B: If F is a singular holomorphic foliation of a compact complex surface M,
then i
9(F) = x(Oum) + 501(T}:) ~a(Ng) - Z 6p(F),

p€ESing(F)

where 6,(F) € N is an index (defined in Section 3.2} associated to the singularities.
In particular, for a foliation F in CP? with degree d(F),

IECaICCA RS N

9(F) 5

peSing(F)

In Section 3.4, we consider fopologically equivalent foliations. A foliation F of a compact
complex surface is a generalized curve, when each singularity of F is a generalized curve in
the sense of [CLNS]. We prove (Theorem 3.4.1):

Theorem C: If F is o generalized curve of a compact complex surface M, then g(F) is
a topological invariant. _

In Section 4 we consider foliations with rational first integral of projective surfaces, that
is, pencils of curves. Among the invariant compact curves of a pencil we distinguish generic
and critical (non generic) curves. Denoting g(C) the geometrical genus of a curve C, that
is, the topological genus of a normalization of C, and x(C) = 2 — 2¢(C), we prove (see
Corollaries 4.2.3, 4.2.5 and 4.2.9):

Theorem D: Let C' be an irreducible generic curve of a pencil F of a projective surface
M. Then

i) if C is a rational curve, then F is birationally equivalent to the pencil of projective
lines in CP? containing a point and x(F) = 4 (that is, g(F) = —1);

i) if C is an elliptic curve, then x(F) > 0;

#41) suppose x(C) < —2 and suppose that each critical curve C, of F has no rational
component and (C))req has at most nodal points. Then

x(F) = 2x(C) + K,

where K is the number of critical curves of F having some multiple component.

In Section 4.4 we relate the previous results of Section 4 to the Peoincaré problemn for
pencils [P], namely, the problem of giving an upper bound to the degree d(C) of an irreducible
generic curve C of a pencil F in CP? in terms of the degree d(F). The general Poincaré
problem of bounding the degree of an invariant curve by the degree of the foliation has no
positive answer in general, being necessary some hypotheses either on the singularities of the
invariant curves [CeLN], [CaC] or on the singularities of the foliation [Ca2].

For a critical curve Cy = >, n;C;, with C; reduced and irreducible, (Cy)req = 3; Cs.

We prove (Theorem 4.4.3)



Theorem E: Let F be a pencil of CP? with irreducible generic curve C. Suppose that
each critical curve C\ has no rational components and that (C)req has at most nodal points.

If g(C) = 2, then
d(C) < F((F) +2) + S((dF) + 2(x(F) - 2x(C))(5 ~ 3x(C)).

In Section 5 we consider foliations with negative g(F). We show that a foliation F of
CP? with g(F) < 0 has a'point with infinite number of local separatrices {Lemma 5.2.2)
and that a generalized curve F in CP? with d(F) = 1 and ¢(F) < 0 is a rational pencil
(Proposition 5.2.1). Nevertheless, we give examples of non birationally equivalent pencils F
in CP? with g(F) = —1 (Example 5.1.2).

Theorem E and remarks of Section 5 motivate the following birational problem, for a
foliation F satisfying the hypotheses of Theorem V and g(F) > 2:

Problem: Are there upper bounds to the geometrical genus g(C) in terms of g{(F) ¢

Lemma 5.2.2 motivates the next question.

Question: Are there always rational first integrals for foliations of CP? with negative

g(F)?
We state a conjecture:
Conjecture 1: Let F be a generalized curve in CP? with g(F) < 0. Then g(F) = —1.

We show in Section 5 that Conjecture 2 implies Conjecture 1.

Conjecture 2: Let G be a connected rational fibration over CPL, given by g : M — CP.
Suppose that the singular fibers of G have as sets at most nodal singularities. Then for any
reduced foliation F of M, then Det(F) > Det(G), where Det() is the sum of Milnor numbers.

Conjecture 2 is motivated by the following result:
Theorem: [Brl] Let G be a rational or elliptic connected fibration over o compact Rie-

mann surface C, given by g : M — C. If Det(G) > 0, then Det(F) > 0 for any foliation F
of M.

In Section 6 it is studied the behavior of x(F) under pullback by generically finite maps.
We deal with foliations of singular surfaces and apply the canonical desingularization to the
surface. The result obtained (Theorem 6.4.3) generalizes the following:

Theorem F: Let m : N — M be a 2-fold covering of a compact regular surface M,
ramified along a curve C C M, C with generalized cusps singulorities. Let ¢ : N' > N be a
canonical desingularization of the surface N andp=mo¢: N — M.

If C is in general position with respect to a foliation F of M, then

x(®*(F)) = 2x(F) — e1(Nx) - e1(O(C)).
In particular, for M=CP? and a curve C of even degree, x(p*(F)) = 2x(F)—(d(F)+2)d(C).

2 Preliminaries

We fix notations and recall some properties of line bundles and intersection numbers.

For a complex vector bundle L on a compact complex surface M, ¢;(L) € H%(M,Z) de-
notes the i-th Chern class. For L, L’ complex line bundles of a compact complex surface M,
and V' a complex vector bundle of M, we identify the cup product ¢; (L) - ¢; (L) € H(M, Z)
and ¢3(V) € H*(M,Z) with the integer numbers < ¢;(L) - ¢1(L'), [M] >, < c2(V), [M] >,
where [M] € Hy(M,Z) is the fundamental class of M. With such identification, the inter-
section number D - D' of a pair of divisors D and D', is defined by

D D' = c;(O(D)) - ¢, (O(D")),

5



where O(D) denotes the line bundle of M associated to a divisor D ¢ M. We consider also
the product ¢)(L) - C := ¢ (L) - e (O(C)).
Let o be a blowing up at p € M. For the exceptional line F = oc~1(p), E- E = —1. For

line bundles L and L/ of M,
a(c™(L)} - a(O(E)) =0,

and
ci(o*(L)) - er(e*(L)) = et(L) - er(L').

2.1 Bimeromorphic invariants of curves and surfaces

The references for all the preliminaries about bimeromorphic geometry of curves and surfaces
are [Be] and [BPV].

If N is a n-dimensional compact complex manifold, Ky = A" T3 denotes the canonical
line bundle of N, that is, the line bundle whose local holomorphic sections are given by
holomorphic n-forms. We also consider the cohomology groups H7(M, L), where we identify
L with its sheaf of sections and h7(,) := dimcH(,).

The Structure Theorem for bimeromorphic transformations between regular surfaces as-
serts that, for any bimeromorphic transformation T': N — M, there are a surface Z and
finite sequences of blowing ups 01 : Z - N and 09 : Z — M, such that T = o9 0 o L

Let v,(C) > 0 denote the algebraic multiplicity of an analytic curve at a point p, that is
the order of the first non-zero jet in its Taylor series. The strict transform CofC by a blowing
up o at p is defined by C := ¢*(C) — 1,,(C)E, with E = 0~ !(p). The Structure Theorem
enables us to define the strict transform of a curve by any bimeromorphic transformation.

When the surfaces are projective, by Chow’s Theorem the bimeromorphic transforma-
tions are birational transformations. The group of birational transformations in CP? is the
Cremona group.

Given a n-dimensional compact complex connected manifold N, its geometrical genus
pg(NV) is defined by pg(N) := h*(N,Op). By Serre’s Duality, p,(N) = h°(N, Ky), that is,
Pg(N) is the number of linearly independent holomorphic n-forms. For a compact Riemann
surface C, py(C) is equal to the topological genus of C' and will be denoted in this work by
g(C). For a compact Riemann surface C' embedded in a surface N, it follows from Riemann-
Roch’s Theorem that g(C) = 1 + 4(C - C + C - Ky).

For any compact curve C' C N, the arithmetical genus, po(C), is defined by p,(C) :=
1+2(C-C+C -Ky). X f:C — Cisa desingularization of a compact curve C, the
geometrical genus of C is g(C) := g(C). B

Let p be a singular point of an analytic curve C. If 7 : C — C is a normalization
of (C,p) with #~1(p) = {p1,...,pr}, by composition with 7 there is an injective morphism
™ Ocpy — Og ,, and it is defined §,(C) = dz'mc(eaz‘?:l(’)é,m/qr* (Oc¢p)). For C compact, it

holds
g(C) = pa(c) - Z Jp-
pESing{C)

Let fi + Ny =+ N;_y — -+ = Ny — N be a finite sequence of blowing ups, where
o1: Ny = N is a blowing up at p € C and, for ¢ > 2, 0y : N; — N;_; denotes the blowing up
of possibly several points. Let C® C N; be the strict transform of an analytic curve C C N
by f; and D; := ft-_l(p). Suppose that V5 > 2 and i > 7, C'%) results from CU—1) by blowing
ups of the intersection points D;_1 N CU~1). Then the points of D; N G are the infinitely
near points of p relatively to fi. If C := G is smooth for some n, define SingR(C, p) as



the set colnposed by p and all infinitely near points relatively to f; fori = 1,.--,n. Denoting
vy 1= 1y(C®), it is proved that

& (C) = Z &E@Z_m—l)-

qESingR(C,p)

In the case of a compact complex surface N (dimcN = 2), the irregularity of N, denoted
g(N), is defined by g(IN) := h'(N,Op). The i-th plurigenus of a surface N is given by:

pi(N) = hO(N, K ),

that is, in particular, p1(N) = py(N). The numbers p;(N), ¢(N) are invariants of bimero-
morphic transformations between smooth compact surfaces.
Recall M. Noether’s Formula for x{Oy) := f=0(~1)"h,"(N, On):

X(ON) = 5(AN) + e (V).

2.2 Line bundles associated to foliations

For the facts stated without proof in this section, we refer to [Cam], [CaC] and {Brl].

Given a foliation F of a compact complex surface M, let {i/;} be an open covering of M
in which F | U is represented by local vector fields {X;} with X; = f;; X;, fi; € O*(U:NUy),
for each U; NU; # B. Then, the tangent bundle of F in M, denoted Tr, is defined (up to
isomorphism) by the transition functions 1;1 The foliation F is determined by a bundle
map f :T'r — TM such that:

) F((TF)y) C TpM and

ii) f is injective if and only if p ¢ Sing(F) (in this case f({T'r),) is the complex tangent
line to F at p}.

A (meromorphic) holomorphic section s of T'x gives by composition X = f o s a (mero-
morphic) holomorphic vector field in M generating F.

If M is a projective (algebraic) compact complex surface and X is a meromorphic vector
field in M generating 7, then the divisor associated to T'r is (X)o — (X)co-

The normal bundle of 7 in M, denoted N, is defined by means of 1-forms instead of
vector fields: it is defined (up to isomorphism) by the transition functions g;; € O*(U; N U;)
given by w; = g;;w;, where w; = 0 represents F in Uf;. If N3 denotes the dual bundle of
N, then the foliation is determined by a bundle map g : N}_— — TM*. A (meromorphic)
holomorphic section s of N% gives by composition a (meromorphic) holomorphic 1-form
2 = g o s generating F.

The relation between these line bundles is given by:

Ky =T ® Nj. (1)

Let 0 : M — M denote a blowing up at p € M and E = 07 (p) C M the exceptional
line. The foliation o*(F(ar_gp)) of M ~ E has an unique extension to a foliation F with
isolated singularities of M , the strict transform of F by o. By the Structure Theorem it is
possible to define the strict transform of a foliation by any bimeromorphic transformation.

If F is represented locally by w = 0, where w is a holomorphic 1-form with isolated zero
at p, then @=0"(w)} has along the exceptional line £ a line of zeros of order m, > 0. The



order of the first non-zero jet of w at p is the algebraic muliiplicity of F at p, denoted v(F, p),

and
{ vp(F) if p is non-dicritical
mp —

vp(F)+1 if pis dicritical,
where dicritical means, in all this work, a singularity p of F such that the exceptional line E
of a blowing up ¢ is not invariant by F (we call the attention to the fact that in the literature
often a singularity is called dicritical when some component of the exceptional divisor of its
resolution is not invariant by the transformed foliation).
The effect of a blowing up ¢ on the line bundles Tj‘,_— and Nr is:

T = o (TF) ® O((L —my)B) and N = o*(N) ® O(-m, ), 2)

which implies

ft

(o™ (Ng)) + F(O(~mpE))
= C%(Nf) - m}%)

Cf(N”f)

2.3 Singularities of foliations

If p € M is an isolated singular point of F, let (z,%) be local coordinates with p = (0,0)
such that the foliation is represented by

X(2,9) = Plo1) gz + Qo) gd (PQ) =1

~with J(z,y) the Jacobian matrix of (P, @). Define

detJ(z,y)

P, 0)Qe, ) 2

Det(F,p) := Reso{

and ; )

P(z,y)Q(z,y)
where Resg{} means the residue at (0, 0) of the meromorphic 2-form. Remark that Det(F,p)
is the Milnor number of the singular point p of F:

Tr(F,p) := Resp{

O
< P(z,v), Q(z,y) >

According to Baum-Bott’s Theorem [BB]:

Det(F,p) = dimg

Det(F) = Z Det(F,p) = cz(M)+cf(T3‘._—)+cl(Tj*;)-c1(M) (3}
pcSing(F)

Tr(F)i= Y Tr(Fp) = G(M)+3TF)+2a(TF) - er(M), (4)
peSing(F)

which implies
Tr(F) = (Nr). (5)

By a blowing up ¢ of a point p, with E = 6~ !(p}, we obtain:
Tr(F) = Tr(F) - mg

8



and [CeM], [CLNS]

ZDet(ﬁ', q) = Det(F,p) — mp(m, — 1) + 1. (6)
geE

A foliation F is called reduced when each of its singularities admit local coordinates (z, y)
such that F is represented by a holomorphic 1-form w with 1-jet given by wy = pzdy — Aydz,
satisfying one of the following conditions: i} p # 0 and A = 0 or vice-versa, or i) u) # 0 and
A e C —@Q'. In case i) the singularity is called a saddle-node.

By [S], for any foliation F in M, there exists a finite number of blowing ups, denoted
f: MM , such that F , the strict transform of F by f, is reduced.

Let C be an analytic curve such that all its local branches at p are invariant by a lo-
cal foliation F. The index Z(C,F,p) defined in [GSV] generalizes for singular curves the
Poincaré-Hopf index. If C' is a compact curve invariant by a foliation F of M, Z(C,F) =

Ypec Z(C, F,p) and by [Brl]:
a(Ty) - C = Z(C,F) + C- C+ C.Ky = Z(C, F) + 2p,(C) — 2. "

2.4 Order of tangency

Let C be an analytic curve and suppose that all its local branches at p are not invariant by
a local foliation F. The order of tangency at p between C and F is defined in [Brl] by:

Oz p)
< £, X(f)>’

where f = 0 is a reduced local equation of C' and X is a local holomorphic vector field with
isolated zeros generating F. If C' be a compact curve of M, with all irreducible component

not invartant by F of M, then

tang(C,F,p) := dimg

tang(C, F) := Ztang(O,f,p) = a(lTg) - C+C-C (8)
p

= a(Ng)- C+C-C+ Ky - C (9)

= c1(Ng) - C+2p(C)—2. (10)

We call the attention to the fact that this definition of order of tangency does not coincide
in the case of singular curves with the definition of [Cam] { the definitions are compared in
[Se]). According to [Cam], if w = 0 represents at p the foliation F, taking 7 : ¢ — C
a normalization of C' with 7~1(p) = {g1,..,qn}, tang'(C,F,p) := E;‘:l ordg 7w (w} and
formulas analogous to formula (10) above are proved for tang'(C,F) = 3, tang'(C, F,p)
(instead of the arithmetical genus p,(C) what appears is the geometrical genus g{C)). In
what follows we will use the definition of [Brl).

If I is the exceptional line of a blowing up at a dicritical point p of F, we obtain, for the

strict transform foliation F: N
my = tang(E,F) + 2. (11)

In fact,
tang(E,F) = o (Nz) - B + 2pa(E) — 2
(c1(c™(Ng)) ~ mper (O(E))) - E - 2

= my—2,



Let C C M be a non F-invariant curve with algebraic multiplicity v, = 1,(C) at p. Let
¢F and F be the strict transforms by a blowing up o at p of C' and F respectively, with

E =0~ p). Then o
tang(C, F) = tang(C, F) — vy(mp + vp — 1). (12)

In fact,
tang(C, F) = cl(N?)-é-l—é-é-}-a-KMv
= C1(Nj:')-O+C-C+O-KM—VP(mp+Vp—1)
= tang(C,F) — vp(mp +vp — 1)

3 Invariants of foliations

3.1 Definition and bimeromorphic invariance

Theorem 3.1.1 Let F be a foliation of a non-singular compact complex surface M. Let F
in M be any reduced foliation associated to F. Then the dimensions

(TR 1= di WM, T § =
h(T}_). dimg H (M,Tj__) =012

do not depend on the particular reduced foliation F and are bimeromorphic invariants of F
under bimeromorphic transformations T : M — N between non-singular surfaces.

Supposing proved the theorem, the following bimeromorphic invariants are defined:
Definition 3.1.2 g(F) = Z?ZD(—I)jhj(T-_;-_:) and x(F) := 2x(On) — 29(F).

We state two consequences.
We recall to what follows that the submanifols of a Kéhler manifold are also Kihler. Since

the projective space CPY with the Fubini-Study metric is a Kéhler manifold, then every
projective (algebraic) compact complex surface is Kéhler. Examples of Kéhler surfaces M
with (M) := h1(M,Op) = 0 are the rational surfaces, i.e., surfaces birationally equivalent

to CP2.

Corollary 3.1.3 Let M be o compact Kihler surface with ¢(M) = hY(M,Ou) =0. Let F
be o foliation of M and let F in M be o reduced associated foliation. Then

o(F) = KO(T) ~ K(25).
In particular, if g(F) < O then hl(’I‘*?) > 0.

Proof First remark that, for any foliation F of any compact complex surface M,
hz(TIf) = hO (N*?) . In fact, for any foliation G, T, = Ky ® Ng and therefore, by Serre’s
Duality, h/(Tg) = h*I(Ng).

if hz(Ti‘f) = hO(N*?) > 0, then the existence of a bundle map g : N:;-__ — (TMU )* associated
to F would imply RO(M, Qlﬁ) > 0. But since 2! (M, Q) is a bimeromorphic invariant, we
have by Hodge Theorem A%(M, Q}ﬁ) = WM, O37) = 0, a contradiction. -
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Let I be a holomorphic line bundle of a compact complex surface M. If for each » € M
there is at least one section s € I'(M, L) with s(z) # 0, then there is a holomorphic map
¢ : M — CPY determined by T'(M, L) (after choosing a basis), with N = dimcI(M, L) — 1.
L is very ample if ¢ is an isomorphism onto its image. L is emple if there is a & > 1 such
that L®* is very ample.

Corollary 3.1.4 Let F be a foliation of a compact projective surface M and let FinM be
any reduced associated foliation. If N? is ample in M, then

9(F) = h(T5).

Proof In fact, as remarked above A/ (T‘f;_;) = h¥J (Né—__) and, by Kodaira Vanishing
Theorem [BPV], hO(Ni"f) = hl(Nf‘}_V) =0, ]
The proof of Theorem 3.1.1 is based on a property of blowing ups, which we state as a

lemma:

Lemma 3.1.5 Let o : N — M be a blowing up of a point p € M and L a line bundle of M.

Then
HY(N,o*(L)) = H (M, L).

Proof According to [BPV] (Theorem I1.9.1.ii ), for the higher order direct image sheaves
R0, (Oy), if ¢ > 0, then Ric.(Oy) = 0.
By the projection formula [Ha) (Ex. 11.5.1.d and Ex. 1I1.8.3), R%.(c*(L)) = 0, if ¢ > 0.
Then H(N,c*(L)) = H*(M, L), for j > 0, by [G] (Chap. F, Cor.6).
. .
Proof (Theorem 3.1.1) First we will show that A’ (T*?) do not depend on the particular

reduced associated foliation F. For this, consider two reduced associated foliations (J\Z, .%z),
1 = 1,2, associated to (M, F). Since they are bimeromorphically equivalent foliations, by the
Structure Theorem there are a surface M; and sequences of blowing ups, denoted o, : M3 -

M;, such that o} (F)) = o3(Fa).
It is enough to consider the case when each o; is a blowing up of p;, with E; := o Ypi)

the exceptional line and F3 := o*(F;). By §2.2

Tz =0i(TF) @Ol —my)E;) and N =oi (Nﬁ) ® O(my, E;).

Since F; have only reduced singularities, then mp; = 6, 1.

If n,, =1, then T? = o} (T~ ) and Lemma 3.1.5 implies that A7 (T? )= hj(Ti"f.).

3

If my, = 0, then N? = o} (N~ ) and, by Lemma 3.1.5,

INLZ)Y=H(NL) j=0.
h(N}-a) R ( }-i) 720
Since, as already remarked, i/ (Tj*?s) = h27 (N*?s) and h2—7 (Ni"j:_‘.) = hJ (T%‘_), we conclude

h(T}_S) h(T},‘_), j=>0, i=1,2

This proves that the dimensions A/ (Ti"f-—) are well defined.

11



Consider now T : N_— M a bimeromorphic transformation and the foliation G :=
(T)*(F) of N. Let F of M and G of N be reduced foliations associated to F and . Since
F and G are bimeromorphically equivalent, there exist a surface Z and sequences of f blowing
ups oy : Z — M and o3 : Z — N such that o7 *(F) and az(g) coincide. Since 7 and G
are reduced foliations, the previous reasoning applies to F and G and suffices to prove that

W(T%) = W(TS).
)

3.2 Formulas for g(F)

Let f; : My — M;..y — -+ = M; — M be a finite sequence of blowing ups, where o7 : M, —
M is a blowing up at p € Sing(F) and, for ¢ > 2, o; : M; — M;..; denotes the blowing up

of possibly several points. Let F 2 be the strict transform of the foliation F of M by f; and
D; = 1(;p) Suppose that Vj > 2 and ¢ > j, .7-"( 2 results from .7-"(3 b by blowing ups of

the smgulantms of D; 1NF FU~ ). Then the singularities of D; N F 7
singularities of p relatively to f;. With this notation, we define:

Definition 3.2.1 Let F := F Fm be a reduced foliation, for some n, and denote by SingR(F, p)

are the infinitely near

the set composed by p and all infinitely near singularities relatively to f;, for i = 1,...,n.
" Then, with m, -—mq(f )
— mq(mq —1)
Sp(Fys Y -
q€8SingRUF p)

Denote by Sing7(F) the union of SingR(F,p) for all p € Sing(F).

Definition 3.2.2 For a foliation F of a compact complex surface M,
| -~
Pa(F) = x(Onr) + 5a1(Tg) - e (N ).

Theorem 3.2.3 If Fin M is any reduced foliation associated to F, then
i) 9F) = m(F) = D 6(F)

peSing(F)

and

i) 9(F) = x(Ow)+3(De(F) =)~ Y (7).

peSing(F)
Proof By Riemann-Roch’s Theorem and §2.2
2 . -
9(F) = Y (-1Pwi(TE)
7=0
1 * * T
= x(Oz) + §CI(T?) : (Cl(T'F“) +c1(M))

= X(Om) + 50T e (V).
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By Baum-Bott Theorem §2.3 (3),
o(F) = x(Ow) + 5(Det(F) - ea(B0)).
If 7' denotes the transformed foliation by a blowing up of F at p, by §2.2
ei(Tp) - alNp) = a(T%) - et(Ng) — mp(my — 1),

and the result follows by considering the definition of é,(F) and the sequence of blowing ups

of the resolution R(F).
3

The degree of a foliation F of CP?, denoted d(F), is defined by

d(F) =) tang(L, F,p),
pEL

where L is a non F-invariant projective line [LN1]. For a foliation of CP!x CP! different from
the two rulings (horizontal and vertical), there is a bidegree: d,(F) := 2_per tang(H, F,p),
with H a horizontal line and da(F) := EpEV tang(V,F,p), with V a vertical line.

Corollary 3.2.4 If F is o foliation of CP? with degree d(F), then

olF) = d(}")(d(z.?-‘) +1) _ Z 5,(F).
pESing(F)

If F is a ruling of CP! x CPY, then g(F) = —1. If F is a foliation of CP! x CP!
different from the rulings, with bidegree (dy(F), d2(F)), then

9F) = ([ (F) + D(d(F) + 1)~ 3 &(F).
peSing(JF)

Proof We compute p,(F) = x(Opy) + %cl(T‘}-) - ci(N ) in the cases of CP? and
CPl x CcPL
For a non F-invariant line L of CP?, by §2.4

cl(T}) L =tang(L,F)—~L-L=d(F)—-1
and
ci(Nx) - L =tang(L, F) + 2 — 2p,(L) = tang(L,F) + 2,

that is, ¢1(T7) = (d(F} — 1)[Z] and c1(N£) = (d(F) + 2)[L], where [L] € H?(CP?,Z) is the
Poincaré dual class of L. Since X(OC Pz) = 1 we obtain the formula for CP?.

In the case of CP! x CP', when F is not a ruling, if H and V' are respectively horizontal
and vertical non F-invariant lines , by analogous reasoning using tang(H, F) and tang(V, F),

we conclude that
a(Tp) = do(F)[H] + di(F)[V] and ar(Ng) = (da(F) + 2)[H] + (d1(F) + 2){V],

where [H] and [V] are the Poincaré dual classes of H and V in H2(CP! x CP',Z), which
proves the formula for CP! x CP!.
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If F is a ruling, for example the vertical one, by §2.3 (7)

cl(Ty) -V = Z(V,F) + 204(V) 2 = -2

and
a(Tr) - H =tang(H,F)~ H -H =10,

hence ¢; (T}-) = —2[H]. Since
e(Ngp)-H=tang(F,H)+2=2 and o(Ng) - V=Z(F,V)+V .- V=0

we conclude that ¢;(Ng) = 2[V]. This gives g(F) = 1 + L(—2[H] - 2{V]) = —1.

3.3 Examples
Example 3.3.1 Let F be a reduced foliation of CP2. Then

Nz = (d(F) +2)0(L),

where L is projective line L, and N is an ample line bundle of CP2, By Corollaries 3.1.4

and 3.2.4,
W(1y) = g(F) = AAFIEL),

Example 3.3.2 Let F be the radial foliation of CP?, that is, the pencil of projective lines
passing by a point p. A reduced foliation F associated to the radial foliation is the regular
ruling obtained from F by a blowing up at p. We denote by £; the resulting surface. Then

0 *Y = 1 * ) = 20, Ty =0.
B, T) = 0, h(El,TJ__) 1L and h*(Zy,T%) =0

In fact, if hO(El,T%) > 0 then there is a non-trivial holomorphic 1-form along T_:},;. But

the ruling Fis locally analytically isomorphic to CP! x A, with A a complex disc. We
arrive at a contradiction with the fact that there is no non-trivial holomorphic 1-form along
TCP!. By Corollary 3.1.3, hQ(Zl,T%) = 0 and, by Corollary 3.2.4, g(F)} = —1, which gives

RS, Tg) = L

Example 3.3.3 Let F be a foliation in CP? and G its strict transform by a quadratic
birational transformation Q : CP? — CP? [Be]. After change of homogeneous coordinates,

@ is given by .
Qzo : 1 2 22} = (2122 : ToZs : ToT1)-

There is a factorization () = g3 00 ! where

1) oy : M —» CP? is given by one blowing up at at each vertex pg = (1 : 0 : 0),
pr ={0:1:0)and p = (0:0: 1) of the triangle A = {zz1z2 = 0} (¥; denoting the
exceptional lines) and

2) gy : M - CP? is the blowing-down of the strict transformass L; by o1 of the sides

Let A’ denote the projective triangle which is the strict transform by @ of A and p!
denote its vertices (see Figure 1 below). Denote by F' the strict transform o}(F) and

G 1= (QV(F) = (05" (7).
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Py

CP(2)

Figure 1: Quadratic birational transformation

Suppose that the sides L; of A are non F-invariant, Sing(F)N A C {po} and L; are
chosen generically (in order that L N E; are regular points of *'). Then we assert:

a): d(G) = 2d(F) -+ 2 — my,;

b): the singularities of G are of types:

i) isomorphic to singularities of F different of py,

ii) isomorphic to singularities at the exceptional line of one blowing up at py,

iii) two reduced singularities resulting from the blowing ups at the vertices p1 and py of
A,

iv} three dicritical points pp, p} and py without singularities at the exceptional line of one
blowing up, obtained by blowing-down of Ei;

c): my, = d(F) +2, my = = My = d(F) + 2~ myp,.

Assertions a), b) and c) imply that g(G) = g(F). In fact, by c):

2
Z mp(mp -1} = Zmpi (mp: - 1) + Z mp(mp - 1) =
2€8ingR(G) i=0 peSingR(G)—{p}0}.0%}
= (d(F) + 2)(d(F) + 1) + 2(d(F) + 2 — mp, )(d(F) + 1 - Mipg )+

+ Z mp(mp — 1).

peSingRAG )~ {2} 04}

By b):
Do mplmy = 1) = (d(F) + 2)(d(F) + D+
PGSinQR(g)
+2(d(F) + 2 ~ mpo J{(d(F) + 1 = my,) + > mp(my — 1),

peSingR(F)—{po}
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Using Corollary 3.2.4, the definition of §,(¢) and item a), we obtain:

9(0) = F(A(F) + 2~ mpe) (2d(F) + 8~ mp,) -

— 1) £ D) + 1)+ 2(d(F) + 2~ myg)(dF) +1 = )] —

1
—E Z mp(mp —- 1)
pESingR(F)={po}

1 i 1
= ZAFNAF)+1) = 5mpo(mpe = 1) =5 > my(mp—~1)
peSingR(F)~{po}

= 9(#).

Proof of the Assertions: _
a): Take a smooth conic C' containing pg, p1 and py . If C denotes the strict transform

of C by oy, then by §2.4
tangp, (C,F) = tangénEi (61 F’) + mp;.

Then

tang(C, F) = my,

ca(Ng) - C+ 2po(C) ~ 2
d(C)(d(F) +2) = 2 — my,
= 2d(F) +2 ~ my,.

tang(C, FN

1l

Remark that €' does not intersect the strict transforms L;. Otherwise €' would be tangent
to some side of A and the contact between C' and A would be greater than 6 = d(C).d(A).
Therefore the blowing-downs of L; effected by oy does not affect C. The i image of C by g9
is denoted L and L = 03 007 (C) = Q(C) C CP2. The image by o of the exceptional lines
E; of oy are projective lines denoted E] C CP2. Since §(L N E!) = 1 we conclude that L is

also a projective line and that

d(G) = tang(L,G)
= tang(é,.?—"')
= 2d(F) +2 — my,.

b): follows from the description of ) and the hypotheses about A.

c): since pj is dicritical we have by §2.4 My, = tang(Lg, F')+2, where L} is the exceptional
line of the blowing up at py. But Lj is the strict transform of Lo := p1pg. Since tang(Lg, F) =
tang(Lh, '), we conclude that Ty = d(F) + 2. For my and my, we obtain, by the same

reasoning applied to Ly and Ly, my, = my = d(F) + 2 — my,.

Let us consider, for a foliation F of a projective compact complex surface M, B(F) the

class of foliations of M birationally equivalent to F.
A minimal surface is a surface without embedded Riemann spheres E with E.F = —1

(that is, without exceptional lines of a blowing up).
We remark that, in the case M is a minimal non-ruled surface, B(F) is composed only by

foliations isomorphic to #. In fact, a birational transformation between minimal non-ruled
surfaces is an isomorphism [Be].
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Proposition 3.3.4 Let M be o minimal ruled surface. Let F be a reduced foliation of
M without invariant rational curves. If G € B(F), then either p,(G) > g(F) or G is

tsomorphic to F.

In the case of CP?, let us define the degree of B(F), denoted d(B(F)), as the minimum
degree of the foliations in B(F). We recall that in each component of the space of foliations
of CP? with fixed degree d > 2, there is an open dense set {f4 such that if F € Uy, then F has
no compact solution and has only reduced singularities [J] [LN1]. The previous proposition

implies:

Corollary 3.3.5 Let F be a reduced foliation in CP? with d(F) > 2 and without inveriant
rational curves. Then

i) d(B(F)) = d(F) end

it) if there is G € B(F) with d(G) = d(B(F)), then G is isomorphic to F.

Proof (Prop. 3.34) Let G = ¢*(F) with ¢ : M — M a birational transformation.
Supposing pe(G) < g{F), we will show that ¢! cannot collapse any curve C C M to a
point, that is, ¢ is well defined in all M. Since M is minimal, it follows from the Structure
Theorem that ¢ : M — M is in fact an isomorphism [Be).

In fact, supposing p,(G) < g(F}, by Theorem 3.2.3,

g(F)=g(0) =pa(G)— D 6(9)

peSing(G)

and we conclude that p,(G) = ¢(F) and 6,(G) = 0 for every p € Sing(G). Suppose that ¢!

collapse a curve C C M to a point p'.
By the Structure Theorem, some strict transform of C is an exceptional line and then C

is a rational curve, Then by hypothesis C' is non F-invariant. Collapsing C by ¢~! gives rise
to a singularity ' € Sing(G) with infinite number of local separatrices and a dicritical point
g € SingR(G, p'), which has my > 2. Then d,(¢) > 0, a contradiction.

I:l

3.4 Topological invariance of g(F)

A foliation F of M is topologically equivalent to a foliation G of N if there is an orientation
preserving homeomorphism A : M — N, with h{(Sing(F)) = Sing(G) and h sending the

leaves of F to the leaves of G.
Topologically equivalent foliations of CP? have the same degree. More generally, ci(Tr)

is a topological invariant of a foliation JF [GSV], that is, by the isomorphism A* induced in

cohomology, ci{TF) = h*e1(Tg).
A singularity of foliation is called generalized curve [CLNS] when there is no saddle-node

in its resolution. A foliation F of a compact surface M will be called a generalized curve of
M when every singularity of F is a generalized curve.

Theorem 3.4.1 Let F be a generalized curve of M and G o foliation of N, with c3(N) =

co(M). Then
i) if there is a bijection between Sing(G) and Sing(F) end each singularity of G is topo-

logically equivalent to o singularity of F, then x(G) = x(F);
it): if G is topologically equivalent to F, then g(G) = g(F).
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Proof If the surfaces M and N are homeomorphic, then x(On) = x(Oar) [BPV)]. The
Milnor numbers Det{F,p) are topological invariants [CLNS|. A singularity topologically
equivalent to a generalized curve is a generalized curve having isomorphic desingularization
[CLNS]. Therefore itens i) and ii) follows from Theorem 3.2.3.

A generic quasi-hyperbolic singularity is defined in [MS] and is a generalization of the
concept of generalized curve with finite number of separatrices.

An analytic deformation of a compact surface My with base space (C*,0) is given by a
proper analytic map F : M — A of maximal rank, where M is a {2+ p)-dimensional complex
manifold and A C €7, such that F~1(0) = M,. The smooth compact surfaces M; = F~1(¢)
are C™-diffeomorphic [BPV]. The family M; will also be called an analytic deformation of

My with base space C'.
A deformation with base space (€7, 0) of a singularity of a local foliation G represented

by w = a(z, y}dz + b(z, y)dy is given by a 1-form
9 = A('T") Y, t)dw + B(CC, Y, t)d'y) -Aa B S O(C?-!-p,(])

with
A(z,y,0) = a(z,y), B(z,7,0) = b(z,y).

Theorem B of [MS] asserts that topologically trivial deformations of generic quasi hyper-
bolic singularities have isomorphic desingularizations. Since under an analytic deformation
{M;}; of a surface My, the C-structure is preserved, it is possible to prove a version of
Theorem 3.4.1 for a deformation {F;}; of F = Fy in M = M.

Theorem 3.4.2 Let Fqy be a foliation in My and suppose that each singularity p of Fo
is generic quasi hyperbolic. Let M, be an analytic deformation of My with base space CP.
Consider o family of foliations {F}: in My and suppose that the singularities of {Fi}s are
{ocal deformations with base space CP of the singularities of Gyp.

If the local deformations of the singularities of Fo in {Fi}y are topologically trivial, then

g(Ft) = g(Fo)

4 Fibrations and pencils of curves

In this section, we consider foliations with rational first integral of projective compact complex
surfaces, that is, pencils of curves of algebraic surfaces.

A fibration of a smooth {connected) complex surface M (not necessarily compact) over a
smooth connected complex curve A is given by f : M — A a proper, surjective, holomorphic
map.
A point p € M is a critical point of a fibration f : M — A if df = 0 at p.' A critical
value at A is a point in the image by f of a critical point. By Remmert’s Theorem, the set
of critical values in A, denoted T, is discrete. The fibers M, := f~'(s) with s € T are the
singular fibers. By Ehresmann-Shih’s Theorem,

fif-wamn)  fTHA-Z) > A-%

is C® locally trivial. Hence the fibers f~1(t), for t € A — I, are all C*°-diffeomorphic and
any such fiber is called a generic fiber, denoted M,.

1We call attention to the fact that, in this definition of fibration, the set of critical points may have complex
dimension 1.
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If a fibration f has connected generic fibers, then, by the fact that f is proper and by
Sard’s Theorem, also the singular fibers are connected. A fibration is connected when all its

fibers are connected.

4.1 Elimination of base points

In order to reduce assertions about pencils of curves to assertions about fibrations, we consider
the process of elimination of base points.
Suppose F in M has a rational first integral ¢. Locally, ¢ can be represented by ¢; = £,
where f;,9; € O(U;) and f{f; = 0} N {g; = 0} < co. The points {f; = 0} N {g; = 0} are the
base points of F in U; and correspond to the singular points of F with local meromorphic
(non-holomorphic) first integral. There is a well-defined holomorphic map

bi| U fimopn(gs=o)) Ui — ({fi =0} N {g; = 0}) = CPL

There is a finite sequence of blowing ups o at the base-points of F and at the base-
points of the transformed pencils, such that for ¢ : M — M we obtain a well-defined map
oo M — CcPL

The description of the process at each base-point p, keeping the notation introduced
above, is as follows.

Let 0 : M’ — M be a blowing up at p € U; with E = o~ 1(p) and without loss of
generality suppose v,(G;) = up(ﬂ),jhere Fi = {fi = 0} and G; = {g; = 0}. We have
o*(F}) = .ﬁ +vp(F)E and 0*(G;) = G+ 1p(Gy) E, where ﬁ} and a: are the strict transforms
of F; and G respectively. Consider F! := F; and G := G; + (vp(G;) — vp(Fi))E, denoting
F] = {f] =0} and G} = {g] = 0}. Then the transformed pencil ' in M’ has a rational first
integral which restricted to ¢~ (i4;) is given by

)
¢i =t 0" HUi) —» CP,
9
because F} — G} = o*(F;) — 0*(Gy).
Also F.Gj = o*(F;).0*(G;) — v2(F}) = F.G; — vg(ﬂ-) and, after performing at most
F;.G; blowing ups at the base-points belonging to if;, we obtain a rational first integral in
M, which restricted to an open V is given by

fi(n)
# = oM CPL.
)

Since {f{™ = 0} N {g!™ = 0} = 0, we obtain ¢ : V —» CP' as a well-defined map and

~

the transformed pencil F in V is a fibration. N
A curve C' of a pencil is a generic curve (critical curve) if its strict transform € by an

elimination of base points of F is a generic (singular) fiber of the fibration F' obtained.
A pencil has irreducible generic curve when the fibration obtained has connected generic
fiber. We distinguish critical curves according if their strict transform are components of

different singular fibers.

4.2 Inequalities between g(F) and g(C)

In this section, if a curve C' = 3, n;C; (with C; reduced and irreducible curves) has some
multiple component, that is, some n; > 1, then (C)yeq := 3; C;. The Milnor number of ¢
at p is the Milnor number of (C),eq at p.
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A (—n)-curve is an embedded Riemann sphere with self-intersection number —n. A mini-
mal curve is a curve without (—1)-curves as components, that is, a curve without components

which can be contracied.

Lemma 4.2.1 Let F be o connected fibration f : M — S of a compact surface M over a
compact Riemann surface S, M, and M, denoting respectively generic and singular fibers.
Let x(M,) denote the topological Buler characteristic of (Ms)req. Then

X(F) = Y 25(F) = x(S)x(My) + D (x(M;) — x(M,)) — Det(F),
peSing(F) 8

where the sum on s runs along all critical values of f in S.
Proof By Theorem 3.2.3 and the definition of x(F)

X(F)=co(M) — Det(F) + > 25,(F).
pESing(F)

By a well known fact about fibrations [BPV]
e2(M) = x()x(My) + > (x(M,) — x(M)).
s

(|

Remark 1 The Hirzebruch surfaces ©,, are characterized as analytic CPL-bundles over CP!
having an analytic section s, with self-intersection number s, - s, = —n [Be].

Let h denote a fiber of a ruling of ¥,,. Consider one blowing up of a point p € h — sy
Then the strict transform of 4, denoted &, is a (—1)-curve and can be contracted. If &,
denote the strict transform of s, under the contraction of b, $, - $p = sp-sn+1=—(n—1)
and the surface obtained by the modification of £, is £, _1. Repeating the process we obtain
%1. The ruling of £; is the strict transform under a blowing up at a point p € CP? of the

pencil of lines containing p.

Proposition 4.2.2 Let F be a connected fibration given by f : M — CP! having generic
fiber My with x(M,) = 2. Then

i) after a finite number of blowing-downs of M, the surface M’ obtained is isomorphic to
a Hirzebruch surface 5, and the modification F' of F is a ruling of Zn;

i) x(F) =4.

Proof Assertion i) is a particular case of Proposition V.4.3 of [BPV]. By Lemma 4.2.1
applied to 7/, x(F') = x(CPY)x(M,) = 4 and x(F) = x(F') because is a birational invariant
of F.

(]

After elimination of base-points we obtain, using Remark 1 and Proposition 4.2.2:

Corollary 4.2.3 Let F be a pencil of curves of a surface M having irreducible generic curve
C' with geometrical genus g{C) = 0. Then F s birationally equivalent to the pencil of lines
in CP? through a point, that is, the radial foliation in CP2.

Proposition 4.2.4 Let F be a connected fibration given by f : M — CP!, If x(F) < -2,

then x(M,) < —2.
In particular, when M is a rational surface, g(F) > 2 implies g(My) > 2.
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Proof By Proposition 4.2.2 above, it is enough to show that x(M,} # 0. Let us suppose,
by absurd, that x(M,) = 0. Applying Lemma 4.2.1 to F we obtain

YoxX(My) = Det(F) = x(F)— Y 26,(F)
§ peSing(F)
< -2,

But we assert that, in fact, > x{(M,) — Det(F) > 0 and the contradiction proves that
x{My} < —2. In order to prove the assertion, write

> x(Ms) = Det(F) = 3 (x(My) - Y Det(F,p)),

peM;

and consider, for each s, f; : U, — A alocal elliptic fibration over a disc A having an unique
singular fiber M, = f;71(0). In this local situation, we consider two cases:

Case 1: M; = f;1(0) is minimal. In this case, we can describe M, using Kodaira’s table of
singular fibers of elliptic local fibrations [K][BPV].

Case l.a): M; is not a multiple fiber.
In the table below it is used the notation for singular fibers of [K], with x(M,) is the

topological Euler characteristic. Figure 2 below shows the dual graphs of some singular
fibers.

M, Components Singularities X (M) = 3 penr, Det(F,p)
Iy 1 elliptic curve non-singular 0-0=0

I 1 rational curve one node 1-1=0

Iy>2  cycle of & (—~2)-curves normal crossings b—b=10

Ir 1 rational curve simple cusp of order 2 2-2=0

I 2 (-2)-curves contact of order 2 3~3=0

IV 3 (—2)-curves triple crossing 4~4=0

I, chain of b+ 5 (~2)-curves nodal crossings b+-6—(b+4)=2
II*  chain of 9 (~2)-curves nodal crossings 10 — 8 = 2

Ifr*  chain of 8 (~2)-curves nodal crossings 9—-7=2

I'V*  chain of 7 (~2)-curves nodal crossings 8—6=2

We conclude that x(M;) — 3 ), Det{F,p) > 0, which proves the assertion in this case.
Case 1.b): If M, is a multiple fiber, that is, A, = mF for some m > 1.

Then according to [K], F=Iy, I1, or I, and hence x(M,) — > pem, Det(F,p) = 0.
Case 2: M; = f;"1(0) has some (—1)-curve as a component.

In this case, M; is obtained from a singular fiber Iy,...,/V*) by a sequence of blowing ups.
The numbers x(M;) — Zpe a, Det(F,p) are invariant by blowing ups in all cases, except for

fibers of type 111 and IV.
One blowing up at the triple point of IV increases in 2 the number

x(Ms) — > Det(F,p).
pPEM,

One blowing up at the singular point of T creates a triple point at the exceptional line and

we are at a situation like that of the fiber IV,
]
After elimination of base-points, we obtain by Proposition 4.2.4,
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I
Ib >2
I; Ilﬂ;>0
A { urt

Figure 2: Dual graphs

Corollary 4.2.5 Let F be a pencil of curves of a surface M, with irreducible generic curve
C. If x(F) € =2, then x{(C) < -2, where x(C) is the geometric Euler characteristic.

The converse is not true (the pencils F>4 of Example 5.1.2 have x(C) < —2 and x{(F;) =
4),

Example 4.2.6 In CP? with homogeneous coordinates (zg : x) : x3), consider the elliptic
pencil given by

fi—-7fo=0, T€ CPl,
where C1 = {f; =0} and C; = {f2 = 0} are cubic curves with transversal intersections. By
Bertini’s Theorem the generic cubic is smooth out of the base-points and by Bézout Theorem
it is smooth at the base-points.

We will consider the different pencils obtained varying the curves C) and Cy. The notation
for the pencils refers to the type of critical curve, according to Kodaira’s Table in the proof
of Proposition 4.2.4.

Let Fp, be the pencil given by

zy + 28 + 23 — 3rzowyze = 0, T € CPL,

that is, with Cy a smooth cubic and C; a triangle. Then a generic curve of F15 18 a smooth
cubic L, that is g(L) = 1, but it is well-known that, for each value 7 € {1, eaaﬁ,e%,oo}, the
corresponding curve of F, is a projective triangle. Sing(Fr,) contains i): 9 radial points
(with Det(Fr,,p) = 1 and §,(F,) = 1) at the transversal intersection C; N Cy and

ii): 12 nodal singularities of the 4 projective triangles (with Det(¥,,p) = 1 and 6,(Fy,) =

0). We have d(F ;) = 4 and along the singularities listed in i) and ii)

> Det(Fr,p)=21=4"+4+1,
pei) i)
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wich imples that in fact these are all the singularities of ¥, in CP? By the formula for
CP%, g(Fp) =42 — 22 == 1.

Let Fry, Frr, Fr,, Frir denote respectively the pencils obtained as above, when Cj is a,
smooth cubic and C; is a) a nodal cubic, b) a cuspidal cubic, ¢) union of a smooth conic and
a transversal line and d) union of a smooth conic and a tangent line. In all these cases, the

formula for CP? gives g(F) < 1.
Let Frv be the pencil formed when € is smooth and C; is given as three concurrent

lines. Then at the singularity p of {f2 = 0}, mp(F1v) = v(Frv,p) = 2 and the genus formula
gives g{Frv) < % -2 _1=0.

Proposition 4.2.7 Let F be o connected fibration given by f : M — § over S a compact

Riemann surface, with generic fiber M.
i) If all singular fibers of F are free from multiple components, then

x(F) = x{(S)x(M,) = E 28, (F).
pESing(JF)

i) If x(M,) < =2, all the singular fibers M, are minimal and (M) req have at most nodal
points, then
X(F) = x(S)x(My) > K
where K denotes the number of singular fibers having some multiple component.
Moreover,
X(F) = x(8)x(My) =0
only if all singular fibers of F are free from multiple components.
In particular, for a connected fibration F, given by g : M — CP!, with M a rational
surface, satisfying the hypotheses of ii) above

o(F) < 20(0,) - £ 2

(with equality holding only if the singular fibers are free from multiple components).

Example 4.2.8 Let H; be the pencils generated by two smooth curves ¢ and C, inter-
secting transversally, with d(C1) = d(C2} = k, Hy, having only reduced nodal critical curves
and smooth generic curve C'. Then the degree of Hy, verifies d(Hy) = 2k — 2 and since the
non-reduced singularities are radial points (6,(#;) = 1} at the intersection C1 NC3, we obtain

g(Hy) = (2’“_2)2(2’“”1) —kK=(k-1)(k—2)~1=29(C) ~1>2, if k>4

Before proving the Proposition 4.2.7, we state a consequence.

Corollary 4.2.9 Let F be a pencil in o surface M with irreducible generic curve C and
x(C) < —2. Suppose that each critical curve Cy has no rational components and that (C))req
has at most nodal points. Let J > 0 be the number of critical curves having some multiple

component. Then
x(F) = 2x(C} = J,

where x(C) is the geometric Euler characteristic of a generic curve. In particular, for a
rational surface M and o pencil F satisfying the hypotheses,

o(F) < 29(0) - 222,
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Proof The hypotheses that there are no rational components of critical curves and
that each critical curve is at most nodal assure that it is possible to obtain, by resolution of
singularities of F, a fibration 7’ with minimal and nodal singular fibres. In fact, 2 minimal
fiber of ' is non-nodal only if the strict transform of a rational component blown-down.

Since ¥(C) < -2, by Prop. 4.2.7-ii), x(F') — 2x(C} > K, where K is the number of

singular fibers with some multiple component.
Since there are no rational components of the critical curves of 7, J < K. In fact, a

multiple componet of F does not appear in F' only if it is blown-down and then it is a

rational component of a critical curve.
[l " n » D
Proposition 4.2.7 follows immediately from Lemma 4.2.1 and the next Lemma:

Lemma 4.2.10 Let F be a connected fibration in M, given by f : M — S, with generic and

singular fibers My and M, respectively.
i) If My is free from multiple components, then

x(Ms) — x(My) — Y Det(F,p) =0;
pEM;

@) If x(Mg) < =2, M is minimal and (Mj)req has at most nodal points, then

X(M;) = x(Mg) — >~ Det(F,p) >0,
peEM;

and the equality holds only if M is free from multiple components.

We remark that assertion 4t) of the lemma above is not true in general without the
hypothesis x(My) £ —2. For example, an elliptic fibration with a singular fiber of type
Mg = mly, m > 1, ie.,, M; a smooth elliptic curve with multiplicity m > 1, has

X(Ms) — x(Mg) — Y Det(F,p) = x(M,) = 0.
pEM,

Proof (Lemma 4.2.10)
Assertion 1) is Iversen’s Formula [Iv].
Proof of 4i): In [X] it is proved that, for any minimal singular fiber M, = 3 7%, n;C; of a

connected fibration with x(M,) < -2,
m ——
(@) g(Mg) > bag, + Y 9(Ci)
i=1
with equality only if M, is free from multiple components, where

b, = > (pa(C) — (@) + 221G E”“ ) m-1) 0,

i=1

and g(a) is the genus of the normalization of C;.
{In Appendix A we give a detailed proof of this result, for reading convenience.)
We show that this fact implies the result of ii), under the hypotheses of nodal singularities

of (Mj)red. In fact, by (a), 2(m — 1) + 2 — 2¢(M,) < ST (2 — 29(C})) — 2bpy, and
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2(m —1) + x(Mg) < ZX(C ) — 22(1%(01) - Q(Cz)) -

1 i=1
- Z(Oz' : Z C5) +2(m — 1),
=1 i

that is,

Zx(cz) - 2Z(pa C;) = 9(Ci) Z(O Z Cj) — x(My) 2 0.
i=1 i=1 j#

By the hypotheses of nodal singularities of (Mj)red, 2 1mq (Pa{Ci) — ¢(C})) is the number
of singularities of the components C; (i = 1,...,m) of M, and %Z:’;l(@ . Z;"# C;) is the
number of intersection C; N C; between all different components. Since at nodal points p,
Det(F,p) = 1, we obtain

Zx(c —22 (Pa(C:) — 9(C)) Z (Gi- Zc)—Zx(O ) =2 ) Det(F,p)
i=1 e =1 PEM,
and x{M;) = 30, X(Ci) — Zpe m, Det(F,p), because normalization of C; amounts to sep-
arate the local branches at nodal singularities.
(I

Corollary 4.2.11 Let F be o pencil in a projective surface M, with irreducible generic curve

C. Suppose that:
a) all curves of F are free from multiple components,
b) each singularity having infinite number of local separatrices is dicritical (the same

supposition is made for singularities at each step of a resolution).

Then:
x(F) - 2x(C) = Z: my(mp — 1)
pe Dicr RAF)
where DicrR(F) C SingR{F) is the set of all dicritical points.

Proof Consider an elimination of base-points of F such that only base-points (dicritical
points) are blow-up. Denote F’ the resulting fibration over CP!, given by f': M’ — CP!.
By hypothesis b), no exceptional line introduced by the sequence of blowing ups defining
M' is a fiber of /. This fact and hypothesis a) suffice to assert that all the fibers of
' M' — CP! are free from multiple components Lemmas 4.2.1 and 4.2.10.i) applied to
F' complete the proof.
(.

Corollary 4.2.12 Let F be a foliation in a projective surface M with rational first integral
¢ = L2 and irreducible generic curve C. Suppose that

i) L = {f =0} is smooth,

i1) I = {fm = 0} is the unique curve of F having some multiple component and

4i1) {Lem)rea N L ts transversel. Then

X(F)=x(Cy= > 20,(F)+x(Lm) ~2C - (Lm)rea— Y, Det(F,p)
peSing(F) pELm—L

where x (L) is the topological Euler characteristic and x(C) is the geometric Buler charac-
teristic.
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Example 4.2.13 An example of foliation satisfying the hypotheses of Corollary 4.2.12. Let
C be a curve of CP? without multiple components, which is supposed transversal to the line
at infinity Le,. Let p = 0 be a reduced affine equation of C' in CP? — I,.,. Denote F the
foliation of CP? which extends the foliation given by dp = 0. Then d(F) = d(C) — 1 and F

has as a rational first integral @ = ﬂ%",ﬁ“—:fﬁ, where P = 0 is a homogeneous equation of C,
0
Lo = {29 = 0} and k := d(C).

Proof (Corollary 4.2.12) Let L,, = Ef:z n;C;, with C; reduced and irreducible curves
and (Ly)req = Zle C;. Being transversal the intersection L N (Luy)req, each singularity
(base-point) p € L N (L )req of F belongs to exactly one component C; of (Lyn)req. There
are local coordinates (u,v) around p in which ¥ is represented by

w = nyudy — vdu = 0,

where C; = {v =0} and L = {u = 0}.
Consider an elimination of the base-point p € I N C;, denoted Op, such that the blowing
ups are only base points of the transformed pencils. The transformed foliation under the

s-th blowing up o; in this sequence, 0 < s < n; — 1, is locally represented by:
w = (n; ~ $)ud?v — ¥dii = 0

that is, 0p = 0y, 0...00 is the elimination of the base-point p € LNC; and the n;-th blowing
up oy, is at a dicritical (radial) point:

W = udv — vdy = 0.

Let us denote by o the simultaneous elimination of all base-points p € L N Ly L =

f=1 n;C;. We conclude that after Zf;l ni(L - C;) blowing ups we obtain from F a fibration
F', given by f =¢oo: M — CP!. Denote I, the fiber of F' which is the union of a) the
strict transform by o of Ly, with b) the components of the exceptional divisor of ¢ which

are contained in fibers of F' (see Figure 3 below).

M’

Figure 3: Elimination of base-points
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Since the exceptional curve of the n;-th blowing up is not contained in a fiber of F' the
topological Euler characteristics x(L],) and x{L,,) are related by

k
X(Lr) = x(Lm) + > (ni = 1)(L- C5).
=1
By the same reason
' k
> Det(F,p)= > Det(F,p)-+ (ni—1)(L-Ci)
pell, pEL,—L i=1
and hence
X(Ip) = Y Det(F,p) = x(Lm) = > Det(F,p).
pell, pELm—L
By Lemma 4.2.1:
X(F)~ Y 28(F) = cp(M') — Det(F')
pESing(f’)
and denoting L, the singular fibers of ' different of L :
X(F)= 30 20,(F) =2x(D) + Y (x(Ls) = X(L)) + X(L}n) = X(L) ~ Det(F).
pESing(f’} §

Since by hypothesis the singular fibers Ly # L], are free from multiple components, by
Lemma 4.2.10.1):

X(FY = D0 2(F) = x(I)+x(Lip) - Y Det(F,p)
peSing(F') peLL,
= x(L)+x(Lm)— Y Det(F,p)

and we conclude
X(F)— D0 20(F) = x(F)— > 26,(F) 2L (Lm)rea
pESing(F) pESing(}q)

= x(L}+ X{(Lm) — 2L - (Lyn)red — Z Det(F,p).
pELm—L

In order to complete the proof, remark that by Bertini Theorem the possible singularities of
a generic curve C are situated at L N L,,. But since

k
> (L) 2Y niCi-C=Lp-C=C-C,
peLNLy, i=1

the conclusion is that C is smooth at L, N L, that is, x(C) = x(L).
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Remark 2 A fiber M; of a fibration is stable [BPV] when i) M; is free from multiple com-
ponents, it) M; has at most nodal singularities and iii) M; is minimal. A fibration is stable
when all the fibers are stable.

Let F given by f : M — 5 be a connected fibration over a compact Riemann surface S.
Let o : M — M be a sequence of blowing ups such that the fibers of the fibration F given
by f oo : M — M have as sets at most nodal singularities.

Given a ramified covering 6 : T — S, T' a compact Riemann surface, consider the pull-
back of M by 4, denoted T xg M. This is in general a singular surface with non-isolated
singularities. After normalization, 1" x5 . M has an unique (up to isomorphism) minimal
desingularization denoted N. A fibration g given by g : N -+ T, is obtained by the pullback
of FbyétoT x g M followed by the desingularization ® : N — T xg M (see Figure 4 below)..

e .
G N F ™

B o
G N F M
g f
Q‘b @LC@D
T T s

Figure 4: Stable reduction

The Global Stable Reduction Theorem [BPV] asserts that there exists a cyclic covering
d : T — S, ramified over the critical values of f and one extra point, such that the fibration
G of N has only singular fibers with nodal points and free from multiple components. After
blowing-down of components of the fibers of G, we obtain a fibration G with stable fibers, G

is a global stable reduction of F.
By construction, the generic fiber of G is ¢'°-diffeomorphic to the generic fiber of 7. By

Lemma 4.2.1 and Lemma 4.2.10-i), x(G) = x(T"}x(M,).

4.3 An inequality for g(F)

Proposition 4.3.1 Let F be a pencil of a surface M with irreducible generic curve. Then
for any reduced foliation F associated to F by a resolution R(F),

1 1
g(:’r)SX(OM)_Q‘CI(N_']:)-cl(M)q-i Z .
PES'iNQR(}-)—Sing(?)

In particular, for M = CP?

3 1
gF) S 1-(dF)+2)+ 5 > e
peSingR(F)-Sing(F)

If oll singularities of F in M are either a} of Morse type, i.e. represented by w = zdy + ydz
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or b} dicritical points without singularities along the exceptional line of a blowing up, then

1 1
9(F) = x(Oum) — a(Ng) -ci(M) + 5 S
| pEDicr(F)

where Dicr(F) denotes the set of dicritical points of F. In the case M = CP?;

g(f) =1- §(d(Jf) +2)) + % > my

2
p€Dier(F) )

Remark 3 Each foliation F in CP? is birationally equivalent to a foliation F' in CP?2
with Sing(F') composed by either a) reduced singularities or b) dicritical points without
singularities along the exceptional line of a blowing up [Cal].

Remark 4 We can compare the result of Prop. 4.3.1 with the formula for the geometric
genus of an irreducible curve C C CP?, when C is a generic curve of pencil F of CP2.

Let F in M be a reduced fibration associated to a pencil F by means of a resolution
R(F), given as a sequence of blowing ups ¢ : M — CP2. For the strict transform C of C
by by o, it holds

ey - Y. vi=C.-0=o,
peSingTL(F)
(where v, are the algebraic multiplicities of C' and of its strict transforms and E, are excep-
tional lines), because C is a generic fiber of F.
Then the genus formula

0(0) = (@O ~D@C) =)~ 3D wlp—1)

peSingTR(F)
simplifies to 5
1/
oC)=1-zdC)+ > 2
pESing'R(}—)

Proof (Prop. 4.3.1) Consider a resolution of singularities R(F) (which, in particular, is
an elimination of base-points) and the connected fibration F obtained.

Suppose that S1,...,S% are all the singular fibers of the fibration F obtained. Let I (Si, F, P)
denote the index of [Suj{which generalizes the Camacho-Sad indices {CS], [LN1]). According

to the formula of sum of indices [Su:

I(8;, F) =Y I(S;, F,p) = (Si)red - (Si)rea-
PES;

By Proposition 9 of [Br2], for fibrations,
I(Sz»-%ap) = T’f‘(.%,p)
(the Baum-Bott index of §2.3) and therefore:

C%(N%) = Z TT(%up)
pESing(F)
k
= Z(Si)red'(si)red
=1
< 0
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where the inequality follows from Zariski Lemma for fibrations (Lemma 7.0.5, Appendix A).
According to §2.2 and §2.3,

G(Ng) = (NF) - > my,
pESingR(f)—Sing(?)

that is,
c (N ) — Z mg <0.
pESingR(F)—Sing{?}

Since the singularities p € Sing(F) have mp = 0,1,

o0F) = XOm)+ 3T -alp) - Y mylmy—1)
peSingR(F)—Sing(F)
= x(Owm)+ %(C%(N}") —a(Ng} alM) - >, mp(my — 1))
pESingR(f)-Sing(?)
< x(Om) - %CI(N}‘) cer(M) + % > my.

peSingR(f)—Sing(?)

Let us suppose now that the singular set of F is composed by Morse type singularities
and dicritical points without singularities after a blowing up.

Let F be the fibration obtained by a blowing up at each dicritical point of F. By
the hypotheses on the singularities, F is a reduced foliation. At a Morse type singularity
of F, I(S;,F,p) = 0 and hence I(S;,F) = 0. We conclude that c%(N~) = 0 and since

Dicr(F) = SingR(F) — Sing(F), as above we prove

1 1
9(F) = x(Oum) = za1(NF) - (M) + 5 > my
peDicr(F)

4.4 Poincaré problem for pencils

In [P} H. Poincaré proposed the problem of bounding the degree of the generic curve of a
pencil F of CP? in terms of the degree d(F) of the pencil. In general the problem is bounding
the degree of an invariant curve in terms of the degree of the foliation. This general problem
has no positive answer without hypotheses either on the singularities of the curve [CeLN],
[CaC] or on the singularities of the foliation [CaC].

In order to precise the problem for pencils, consider F a pencil in CP? with rational
first integral ¥ = g, where F,G are homogeneous polynomials with the same degree d,
gcd (F,G) = 1. By the Second Bertini Theorem [J], the supposition that a generic curve

= {7F + pG = 0} of the pencil is reducible is equivalent to the existence of polynomials
F’ G' with d(F") = d{G') < d and a rational function [ verifying

&g

Obviously, a bound to the degree d(C) of the generic curve implies by the genus formula
for plane curves the existence of a bound to its geometrical genus g(C). In general, however,
the existence of a bound to the geometrical genus g(C) does not imply a solution to the
Poincaré problem for pencils, as can be seen in the next example.
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Example 4.4.1 Consider the pencils F,, in CP? extending the foliation given in affine
coordinates (z,y) by w = pzdy + qydz, L € Q*, ged (p,¢) = 1. Then there are rational first

integrals
13
\Ij(ﬂ.,"o P A5 I .'132) = W’
Zg
extending the holomorphic first integral (z,y) = #Py?. This means that the generic curves
Cpq of Fpy have geometrical genus g(Cpg) = 0. The condition ged (p, q) = 1 assures that Chq
is irreducible. For all Fpq remark that d(Fpq) = 1 and d(Cpy) = p + ¢. Also remark that

9(Fpq) = —1, by Corollary4.2.3.

Example 4.4.2 Suppose F is a pencil in CP? with irreducible generic curve C and suppose
that the singularities having local meromorphic first integral are of type: w = Apxdy — ydz +
wg, Ap € N. Recall a formula found in [P] and [Pa:

9O =145 T O+~ g~ (O,
peSing(F) i

wich implies that if d(F)} > 4 then g(C) > 2. Moreover, if d(F) > 4 and g(C) > 2 are given,
then the formula implies that there is an upper bound to Epe sing(F)(Ap + 1)1 (C) and, since

3 1
9(C)=1-3dC)+5 3. XWw(C)),
pESing(F)

that there is an upper bound to d(C), as remarked in [Pa).

The next result shows that, under certain conditions, it is possible to give an upper bound
to the degree of the generic curve of a pencil d(C) in terms of a): data of the pencil (d(F)

and x(F)) and b): the geometrical genus g(C).

Theorem 4.4.3 Let F be a pencil of curves in CP? with irreducible generic curve C. Sup-
pose that each critical curve Ly has no rational components and (L),eq hos at most nodal

singularities. If g(C) > 2, then
dC) < FF) +2) + S(AF) + DF) - 3OV - 3x(O)).

Remark 5 About Theo. 4.4.3.

1. By Corollary 4.2.5, g(F) > 2 implies g(C) > 2.

1. It is not supposed that unions of critical curves are nodal curves.

2. The hypothesis that the critical curves have as sets at most nodal singularities does
not imply that the generic curves are nodal ( see Example 4.4.1).

3. Let F be a pencil in CP? with ¢(C) > 2 satisfying the hypotheses of Corolllary
4.2.11 and that the singular points with holomorphic first integral are reduced. Then x(F) —

2x(C) = 0 and d(C) < L(d(F) + 2) by Theorem 4.4.3.

The next Lemma, 4.4.4 will be used in the proof of the Theorem 4.4.3.
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Remark 6 Consider f : M — S a connected fibration with generic fiber of genus g > 0.
Let M; be a singular fiber and suppose that M; = mD, for m > 1, D a divisor. Then m

divides g — 1. In fact,
1
g= Q(Mg) =Pa(Mg) = pa(Ms) = 1+ E(Ms M+ M, - KM)
1
= 14+ §(mD'KM),

since M, - M, = 0. That is, D - Kpr = 22, Since D - D = 0, we conclude that

1 ~1
pa(D) =14+ :D Ky =1+9"2,
2 m

as asserted.
This remark shows that there is no multiple fibers of connected rational fibrations (the

case g = 0) and that there is no restriction on the multiplicity m in the case of elliptic
connected fibrations (we recall again the fibers mlj). In the case g = 2, for example, we have

m =1.
The next lemma (a particular case of Proposition 2 of [X]), generalizes the remark:

Lemma 4.4.4 Let f : M — § be a connected fibration with generic fiber of genus g > 2.
Suppose My = 3, m;C; is o minimal singular fiber of f. Then for all i, m; < 6g.

We recall that a foliation in CP? can be represented by a homogeneous 1-form

2
Q== Zﬂ(wg 1zt ze)dzr; with  ged (Fy, F1, Fy) = 1
i=0
with the F; € Clzg, ), 2] homogeneous with the same degree d = d(F;), satisfying the
condition 3% o x5 = 0. As it is well known d(F) = deg(§2) — 1 :=d ~ L.

Lemma 4.4.5 ( Darbouz ) [J]
Let F be a foliation of CP? with rational first integral ¥ = GF—, with irreductble generic

curve C = {7F + uG = 0}. Denote Ly = 3, Ly; o critical curve (with Ly; = {uy; = 0}
reduced and irreducible). Then
GdF — FdG = f Q with f=]]uid s,
M
where the product runs for all critical curves and their components and Q is a homogeneous
polynomial 1-form with isolated singularities representing JF.

Proof (Theorem 4.4.3)
If 7 has irreducible generic curve C' = {7F + uG = 0}, with the notation of Darboux’s

Lemma 4.4.5,

GdF —FdG = fQ with f=]Jus oad) ™
A

Taking degrees,

2(C) =1 = deg(Q) + ) d(Lni)(es — 1)
Al

= d(F)+ 14 d(Ly)(es — 1).
At
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Hence ; ]
d(C) = F(@dF) +2) + 5 L) s = 1))
M

and to give an upper bound to d(C) is equivalent to prove that there are upper bounds to
a) the number of critical curves Ly with some multiple component,

b) the degrees d({L)red) (where (Lx)rea = 22; Ls) and
¢) the multiplicities a; of the multiple components of all L.
About a): by Corollary 4.2:9 the number J of critical curves of 7 having some multiple

component verifies
J < x(F) - 2x(C)
b): for each A, by [CeLN]
d((La)red) S AF) + 2

¢): By the proof of Corollary 4.2.9, there exists a fibration F' obtained by blowing ups
of F, having only minimal fibers M; and (M;)req With at most nodal singularities.

Then the multiplicities of the components of M are bounded by 6¢(C) by Lemma 4.4.4.
The transforms of curves Ly are components of M and therefore ay; — 1 £ 6g(C) — 1 =

5 — 3x(C). The theorem is proved.
4
For a curve L of CP! x CPY, di(L) := L - H and da(L) := L -V, where H and V are

respectively lines of the horizontal and vertical rulings.

Corollary 4.4.6 (of Theorem 4.4.3) Let F be a pencil of curves in CP! x CP! in the same
hypotheses and notations of Th. 4.4.3. If L is a generic curve of F, then

L)+ (L) < F(d(F) +d(F)+4)+
P2 (A (F) + () + DF) - 2x( (G = 3x(D))

Proof (of Corollary 4.4.6) A standard birational transformation T' from CP' x CP! to
CP? is obtained as follows. Let p € CP! x CP! and denote H and V the horizontal and
vertical lines of CP! x CP! with p = H NV. Consider a blowing up at p and the strict
transforms of H and V, denoted respectively, H and V. Since H and V are (—1)-curves, we
can blow-down these curves and the resulting surface is CP?. This standard modification
is denoted T : CP' x CP! — CP? The strict transforms of the lines of the horizontal
an vertical rulings compose two pencils of projective lines passing by the two points T(H)
and T(V). Then the strict transform L’ of L by T contains T(H) and T(V) and has
d(L') = d1(L} + do(L).

Given F, take a generic point p such that for H and V containing p, Sing(FIN(HUV) =0
and tang(H,F,p) = tang(V,F,p) = 0. Then the strict transform F'in CP? of F by 71
verifies

d(F") = di(F) + do F) + 2.
In fact, if § denotes the strict transform of a generic horizontal line He of CP! x CP!, then
S is a projective line non F'-invariant and by §2.4:

dF) = tang(H,F)+ tang(S,F',T(V))
= d(F) +mpan(F)
= A(F)+d(F)+2.
Applying Th. 4.4.3 to ' and L' and using the birational invariance of x(F) and x(L)
we prove the assertion. -

33



5 Foliations with negative g(F)

5.1 Examples

Example 5.1.1 Let M = C x L be the product of two compact Riemann surfaces C' and
L. Consider the fibrations F; and F, given by projections p; : M — C and P2 M= L
Then, by Lemma 4.2.1, x(F;) = x(C)x(L). As it is known [Be]

X(Ou) = (M) + ex(h0))
= (4(©) - )(e(£) - 1)

and then g(F) = —(g(C) — 1)(¢(L) — 1), although F; and F5 are not birationally equivalent
if g(C) # g(L).

When M is the rational surface M = CP! x CP! we obtain g(F) = —1 and as already
remarked in §4.2, this fibration is birationally equivalent to the radial foliation of CP2.

When M is the ruled surface M = C' x CP? with g(C) > 1, then g(F) > 0.

When M = C x L, with g(L) > 2 and ¢(C) > 2, then M is a surface of general type
in Enriques-Kodaira classification [Be]. In this case g(F) < —1 can be made arbitrarily
negative. We recall that ruled (non-rational) surfaces and general type surfaces are not

birationally equivalent to CP2.

Remark 7 We recall a geometric interpretation of the critical curves, which will be useful

for the examples.
Let M be a projective surface and |C| a very ample complete linear system of curves. If

M = CP?, |C| = |Cy| is the linear system of all curves with degree d.
By a singular curve we mean a curve which is singular as a set or has some multiple
component. The geometric locus D C |C} of singular curves is the discriminant hypersurface.

In the case M = CP? and |C| = |Cy|, the degree of Dy in IC’4IECP1@:;““gl is
deg(Dq) = 3(d — 1)*

and a singular plane curve C, of [Cy] corresponds to a point in the hypersurface Dy with
algebraic multiplicity

veo (Da) = [3(d(Ca) = 1) = dM)d® + 3 1((Ca)reas p),
peCa

where dV) := d(Cy) — d({Ca)req) and #{(Ca)red, p) is the Milnor number [AC].
A generic point of D corresponds therefore to a reduced curve of |G| with the most generic

type of singularity, that is one nodal point.

A subspace P=CP! of |Cy|, P ¢ Dy verifies P.Dy = 3(d~1)?. For this reason, we expect,
for example, that a pencil F in CP? composed by generically smooth cubic curves will have
12 reduced nodal curves, provided F is generic in the sense that P £ N Dy is transversal in

|Cal-
By the formulas above, the multiple components of a curve can be seen as non-isolated

singularities of the curve. :

Example 5.1.2 Consider & > 2 different concurrent projective lines L;. Consider the folia-
tion Fy in CP? extending d(I;...l;) = 0, where [; = 0 is the affine reduced equation of L; in

CP2 ‘_‘Loo.
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We assert that a): the generic curve of F is smooth; b) d(Fy) = k— 1 and ¢}: Sing(Fr)

is composed exactly by the point p = ﬂi-“:lL,: and & singularities at the infinity ¢; € L N
(Ukrle) :

zIf b) and c) hold, then g(F) = —1 (Corollary 3.2.4). If a) holds, then the generic curve

has g(C} = & (k—1)(k—2) and we conclude that the pencils F}, are pairwise non birationally

equivalent. F, is birationally equivalent to the radial foliation by Proposition 5.2.1 and the

elliptic pencil F3 with g(F3) = —1 is non birationally equwalent to the elliptic pencils F of

Example 4.2.6, which have g(F) = 1,0.
In order to prove a), we remark that if & generic curve of F; has singularities, then by

Bertini Theorem they must be at the points ¢; at the infinity, which are the base-points of
the pencil Fj. But the contact of each (smooth) local branch of a Fj-invariant curve with
each line L; at g; is of order k: the local equations around ¢; is kudv — vdu = 0. If the
generic curve is singular at some g;, then its contact with the curve UF_, L; is greater than

k?, contradicting Bézout’s Theorem.
In order to prove b), remark that by Darboux Lemma 4.4.5 it is equivalent to prove

that the curves of F different of C, := kL, have no multiple component. Assertion a) is
equivalent to
P= Pfk ¢ Dka
where Dy C |Cy] is the discriminant hypersurface introduced in Remark 7. For C, := kL
as a point of Dy:
ve.(Dr) = [Blk—1)— (k- DIk —1)+ > u{(Calreasp)
p Ca
= 2k~ 12

For Cp := Ez_ Li, voy (D) = pl{(Cplreas p) = (k - 1)2, Since
3(k—1)" = d(Dk) =Px, D 2 ve,(Dk) +vg, ('Dk) =3(k— 1),

we conclude that in F;, there is no curve different of C, with some multiple component. Also
we have proved that there is no curve in Fy, singular as set different from Cy and therefore

agsertion c) is proved.

Remark 8 With the notation of the previous Example 5.1.2, we assert that F &k, the strict
transform of F; by a blowing up at p = ﬂi?:lLi, is a Riccati foliation of the Hirzebruch

surface ¥j.
In fact, since my = vp(F) = k—1 = d(F), for any projective line L # L, tang(L, Fy, p)

d(Fi). If Q is the pencil of lines through p = ﬂiulL,, then the transformed foliation by

blowing up at p is isomorphic to the ruling of ¥;.
The transformed foliation Fy is transversal to the generic lines L of the ruling £, because
tang(}" ks ) = tang(Fg, L) —my = (. A foliation transversal to generic lines of the ruling of

¥ is a Riccati foliation [LN2].

5.2 On birational classification

If 7 is a foliation of a projective surface M with g(F) < 0, then, for any reduced associated
foliation F of M the divisor associated to N-= is not ample in M. This is the content of
Corollary 3.1.4 and expresses a non-genericity of the condition g{(F) < 0.
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By the formula for CP? of Corollary 3.2.4, a foliation F in the plane with g(F) < 0
must have many degenerate singularities. This implies, by the results of [J][LN1], that such
foliations must be non generic elements in the space of foliations of fixed degree d, if d > 2.

If F is a pencil of plane curves, g(F) gives information about the singularities of its generic
and critical curves. If there are many isolated singularities of the curves of F, it is expected
an increasing of the sum 3 Sing(F) 8p(F). If there are multiple components of critical
curves, (that is, non-isolated singularities according to Remark 7), then d(F) decreases by
Darboux’s Lemma 4.4.5. In both cases decreases

g(}_)=d(}‘)(d(2}')+1)_ S 50
pESing(F)

Nevertheless Example 5.1.2 shows that g(F) is not sufficient for a birational characterization
of pencils in CP2, even when g(F) < 0.

Proposition 5.2.1 Let F be a generalized curve in CP? with g(F} < 0 and d{F) = 1. Then
F is birationally equivalent to the radial foliation in CP? and g(F) = —1.

The assertion is false for d(F) > 2 (see Example 5.1.2).
The proof of Proposition 5.2.1 is based on the following Lemma:

Lemma 5.2.2 Let F be u foliation in M with x(F)} > co(M). Then there ezists some

singularity of F with infintte number of local separatrices.
In particular, a foliation in CP2? with g(F) < 0 has a point in CP? with infinite number

of local separatrices.
Proof By the hypothesis and Theorem 3.2.3

0> co(M)—x(F)
= Det(F)— > mp(m,—1).
peSingR(F)

Suppose, by absurd, that each singularity of 7 in M has a finite number of local separatrices.
We will show that this implies that

Det(F)~ 3  mylmy—1) >0,
peSingR(F)
a contradiction which proves the lemma.
If F is a reduced foliation associated to F and §R(F) is the number of blowing ups of
the resolution R(F), then by §2.3 (6)

Det{(F)~ S my(my—1) = Det(F) - R(F)
peSingRAF) .
> §Sing(F) — R(F),

and we will show that [Sing(F) > IR(F).

For each singularity p of 7, fR(F,p) denotes the number of blowing ups in its resolution.
Each component of the exceptional divisor D, is F-invariant and D, has §R(F,p) — 1 points
of normal crossings. But by [CS], F has at least one singularity along D, which is not at the

{normal) intersections of its components, that is, ﬁSz'ng(j:) > IR(F). ]
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Proof (Proposition 5.2.1) Each singularity p of F in CP? has my, = 1. In fact, if my > 2,
then each line passing by p would have tang(L,F,p) > 2 ¢f. §2.4 and therefore would be
F-invariant. F would be isomorphic to the radial foliation R and d(R) = 0, contradiction.

Then each singularity of F in the plane, by the Jordan Canonical Form, belongs to one
of the following types:

a): w=(z+y)dy —ydz +wz =0,
b): w=ydy+wy =0,
¢): w=Azdy — pyde +wp =0, Au#0, 2 2#1 ged(\p) =1

where p = (0,0) and wy a 1-form with zero of order at least two at (0,0).

Type a) generates by a blowing up a saddle-node and therefore is excluded.

Since Det(F) = 3 §2.3 (3), if a point p is of type b}, then it is in fact of type

b) w=y(l+ Az, y)dy + 2" (1 + Blz,y))dz =0,
A(0,0) = B(0,0) =0 and n =23

By Lemma 5.2.2 there exists at least one singular pomt p; in the plane with infinite
number of separatrices. Such point must be of type ¢} with 2 g€ @t - {1} (non radial). Since
Det(F,m) = 1, there are other two (counted with multiplicities) singular points py, pg of 7

in the plane. We will show that both belong to type c).
Suppose, by absurd, that for instance p; is of type b’ ). Then Det(F,pz) 2 2 and we

conclude that in fact Det(F,p2) = 2 (that is, p2 = p3). Then F is represented at ps by:
¥') w=y(l+ Az, y))dy + z%(1 + B{z,y))ds.

Let L1 denote the line joining p1 and pa. We conclude, as above, that L is F-invariant.
But analyzing the resolution of ps we see that at pp there is an unique irreducible local
separatrix v of type: v = {ct: — y? 4 h.o.t. = 0}. This contradiction shows that p, is not of
type b’). '

Hence there are singularities pz # ps both of type c}). We assert that p;, p2 and p3 cannot
be collinear. In fact, suppose Lig3 is the projective line containing p;, p2 and p3. Consider
Z(Ly23, F) the sum of Poincaré-Hopf indices along Lig3. Clearly Z (Ly93, F) > 3, but by §2.3
(7)

Z(L123, F) + 2pa{Ln23) — 2 = c1(TF) - Lz = (d(F) - 1) =0,
that is, Z({L1g3, F) = 2. Hence we consider the F-invariant projective triangle L1aUL13ULas,
where p;,p; € Lyj.
Case 1): g(F) < —1.
The points p;, pa, p3 are of type c) above, that is, each p; i = 1,2, 3 is represented by

w; = Azdy — piyde +wig =0, ips # 0, % #1, ged(Xj,pi) = L.
3

The local separatrices 7; at p; of type v; = {2 —tyti+h.o.t = 0}, with t € C*, are irreducible
because ged();, pi) = 1. Hence in the resolution of each p; it appears at most one dicritical

(radial) point. Since we suppose
gFy =1~ 3 qu(m;—l) < -1
geSingR(F)

it must appear one radial point in the resolution of each p; ¢ = 1,2,3. Hence each p; is
represented by w; = Aizdy — piyds + wiz = 0, W1th € QF — {1}. The Camacho-Sad indices
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[CS] verify 4p, (Lij, F) = I’}: and iy, (L, F) = 5 and since {p1,ps,p3} = Sing(F) N (L2 U
113 U Lag) we conclude that for some line Ly

Z ip(Lij, F) > 1

pESz'ng(f')ﬂng

contradicting the formula of sum of indices, which asserts that

Y Ly F) =Ly Ly =1.
PESing(f)nL;,j

‘The contradiction shows that the case g(F) < —1 does not oceur.

Case 2): g(F) = —1
We conclude there are exactly two dicritical (radial) points in the resolution of . There-

fore we can assert that among the points P1, p2 and p3 of type ¢) there are two points p; and
P2 represented respectively by

A
w = \zdy — pnydz +wa, ged (A, p1) =1, ﬁ_i €Qt - {1},

A
W= Aoz dy — poydx + wae, god (g, pg) = 1, #—z €eQt - {1}
and p3 is represented by
A
w = Agzdy — psyde + wap, ged (A3, pa) = 1, ﬁ Q.

Let Ly, := p1.p2 be the line at infinity of CP? and (2, w) affine coordinates of C2=C P? — L1y
in which L3 = {z = 0} and Lg3 = {w = 0}. Then F is represented by a polynomial 1-form
« of degree 1 [LN1]J:

a = (az + bw)dw — (cz + ew)dz, a,b,c,e € C
The F-invariance of {zw = 0} implies that b=c=0 and & = azdw — ewdz, with £ = 33 Q.
Therefore (2, w) = 2*w~#3 is a holomorphic first integral for F in C?, extending te CP?
Ag —H
as a rational first integral U(zy : 21 : 23) = %. Since ged (A3, 13) = 1, then F is a
0

pencil of irreducible generic rational curves in CP? and therefore F is birationally equivalent

to the radial foliation (Proposition 4.2.3).
|

5.3 Conjectures

Question: Are pencils the unique type of foliations in CP? with g(F ) <0?

Conjecture 1: Let F be a foliation of CP2, Then g(F) > ~1.

Conjecture 2: Let G be a fibration with rational connected generic fiber, given by g : M —
CPl. Suppose that the singular fibers of G have as sets at most nodal singularities. Then

for any reduced foliation F of M ,
Det(F) > Det(G).
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Assertion: Conjecture 2 implies Conjecture 1.

In fact, let M be the surface obtained from CP? by a finite sequence of blowing ups o
defining a resolutlon of . Let F in M be the reduced foliation associated to . Let G given
by g : M — CP? denote the rational fibration in M which is the strict transform by o of a

radial foliation in CP?. By Theorem 3.2.3
(M) = x(9) + Det(G) = x(F) + Det(F).
Supposing Conjecture 2, then Det(F ) > Det{G) and by Lemma 4.2.2
2 - 29(F) = x(F) = x(F) < x(G) = 4,

that is, g(F) > —1.

6 Ramified coverings

A polynomial relation P(y',z,y) =0, ¢ = g:% defines a multiform differential equation that
can be interpreted as a differential equation in a surface P(w,z,y) = 0, which is a ramified
covering over the plane (z,y). This is a motivation to the study of ramified coverings and
the variation of x(F) under pullback of F by the projection of a ramified covering. After
preliminaries on singular ramified coverings, we state in §6.4 a formula for the variation of

x(F) under pullbacks by generically finite maps.

6.1 2-Fold singular coverings

Let C be a curve free from multiple components of a non-singular surface M, Suppose there
is a line bundle L on M such that

OC)=LeL

If Cis glven inU; by C = {f; = 0} and 9;; € O*(U; NU;) is a transition function for L,
then % . We can suppose that U; trivializes L and z; is a complex coordinate for the
fibers of LI Ui' Then the local equations 22 — f; = 0 define an analytic set of the total space
of L denoted M(C). In fact M(C) is well defined, because in I4; N{; we have:

zzg_f'i‘ = "rbz_g 7 "wayfj
AN D)

By definition M(C') is a 2-fold covering of M ramified along C, with projection 7 : M(C) —
M. 'The singularities of M(C) are the points which are singularities of C' and are isolated

because C is free from multiple components.
In the particular case M = CP?, the hypotheses on C' are equivalent to the condition

that C is of even degree and free from multiple components. If C is transversal to a line at
infinity Loo = {zo = 0} and F(zp : 21 : £2) = 0 is a homogeneous equation of ¢, then M(C)
can be seen as the possibly singular surface associated to the 2-valued function

v [T
- [

since the degree d(F) is even g does not ramifies along L, — C.
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6.2 Canonical resolution

We describe the canonical resolution [BPV] of the surfaces M(C) introduced in §6.1. Let
M%) := M(C), Ly := L, Cp := C and take a singular point p € Cp. Let o : M’ — M be
a blowing up at pg := p, By := 07 {po), O(E1) the associated line bundle. If the algebraic
multiplicity of Cy at py is vy, define the curve Cy C M’ and the line bundle Ly of M’ by:

Cy = 0*(Co) — 2[-1;—0]E1

Ly=0"L®O(~ [ ~|B1),

where [%] means the greatest integer not exceedlng . Since O(C}) = L1 ® Li, we can
define as above the 2-fold covering M!(C) over M’, whlch has ramification along C.

Let {z,1y) be local coordinates of a nelghborhood U of py with z(pg) = y(pe) = 0 and let
(t,y) be local coordinates for ¢ € o™ (po), where o(t,y) = (ty,y)} = (2,y). If Z is a local
coordinate for Ly ¢, then M 1(C) is given in the local coordinates introduced by

- = - L <0, with G = () = 0)

A bimeromorphic map ¢ : M(C) = MY(C) is given in the local coordinates above by

&((t,1),2) = ((tw, 1), 41 312) = ((z, ), 2).

After a finite number of blowing ups ¢ we obtain from Cy a curve C; with only ordinary
double points. Therefore Cj1; := ¢*(C;) — 2E;4 coincides with the strict transform of C
under a blowing up. Then Cj4 is smooth and therefore M “+1(C) is smooth and ramified
exactly along Cy.1 in a neighborhood of Eypy ;.

Proceeding in this way for all singularities of Cp, we obtain a smooth surface, denoted
M(C), and a bimeromorphic map ¢ : M M(C) — M(C) which is a desingularization of M (C).
The map mo¢: M (C) — M is generically finite of degree two.

If w : M(C) — M is the singular 2-fold covering, o : M * —+ M denote the sequence of
blowing ups used in the definition of M(C) and ¢ : M(C) — M’ is the smooth 2-fold covering

obtained, then ro ¢ =0 0q.

Figure §: Canonical resolution
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Example 6.2.1 Many surfaces are obtained in this way [H]. In the case M = CP? and ¢
is a smooth conic, then the smooth surface M(C) is isomorphic to CP! x CPL. If ¢ is the
union of two lines , then M\ (C) is isomorphic to the Hirzebruch surface &3, If C' is smooth
of degree 4 in CP%, M(C) is a Del Pezzo surface isomorphic to CP? with 7 points blown
up. If C has degree 6, M (C) is a K3-surface, etc. Starting with a rational surface we can by
this method obtain surfaces of general type in the sense of Enriques-Kodaira classification.

6.3 Iterated 2-fold coverings

The definition of M (C) in §6.1 and §6.2 can be iterated, in order to obtain ramified coverings
of degree 2" having ramification curves with order of ramification 2.

Let ¢U,...,C™) be n curves in M intersecting transversally, all C; free from multiple
components and verifying @(C®) = L) @ L) We define ; : M (€M) — M and consider
the canonical desingularization ¢; : M(C()) - M(CW).

Starting now from M(C) and the curve (m; o 1)~} (C®@) M(C®Y we define the

singular 2-covering . —_
my : M(CW)((my 0 ¢1)"H(CP)) —» M(CW)

(the points ¢ N C®@ are regular points of C'V) and therefore the curve (m1 0 ¢1)"1(C?)
has no multiple components and also verify (my o ¢1)*O(C?®) = (m; 0 $;)*(L® @ L?)). The
canonical resolution of M(C™)((my o ¢1)~H(C®)) will be denoted

¢2: M(CW,CP) » MCD)((m1 0 41)7H(CD)).
In this way we define M{C, ..., C™) and
T oo om0, : M(CY, .., 5 M

is a generically finite map of degree 2", with ramification curves with order of ramification
2.

MCMy(9) 1! O

......

Figure 6: Iterated 2-fold covering
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6.4 Pullback of foliations and variation of x(F)
A foliation F of a neighborhood i/ C M of an isolated singular point p of a surface M is a
regular foliation of U — {p}. A local separatriz at p is a leaf L of U — {p} having closure given

by L U {p}.
Keeping the notation of the previous section, we define starting with 7 of M the foliations

T (F) of M (C) (singular surface) and Gy := ¢ymy (F) which extends with isolated zeros
the foliation
(ﬁéllﬁ(c(l))_qgfl(p))*(7";(}—))
since M(C() is normal [C]. In this way we define
G = (mpodo.. om0 dn) (F).

Definition 6.4.1 A local non-singular foliation F has low contact with a non F-invariant
curve -y at p when the multiplicity of intersection 1 (l,y) between the leaf [ of F verifies:

_{m) ()22
wp(l7) = { Pora it Vi(’z) = 1.

Definition 6.4.2 A foliation F is in general position relative to a curve C at p when i) no
local branch at p of C is F-invariant, ii) p ¢ Sing(F) and iii) F has low contact with C at p.

A foliation F is in general position relative to a curve C' when it is in general position
relative to C at all points.

Remark 9 Let F be a foliation in general position relative to a curve C at p with p = (0,0)
and G = {z? + y**! = 0} ( C has a generalized cusp at p). Then the order of tangency

between F and C at p, tang(F,p), verifies tang(F,p) = k + L.
In fact, let F be represented by the local vector field

X = afz, y) — + b(a, y)a , a(0,0) #0.

By definition (cf. §2.4)
O
tang(C F,p;) = dimg———+ (@ 0)

where 7 is the ideal
J = <zt4+yt X @+ >
= <z?+y" 2z, vz + (k + Dbz, )" > .
With the holomorphic change of coordinates
(k + 1)b(z, y)y*
2a(z,y)
we obtain for z = g(u,v), a = a(g{u,v),v) and b = b(g{u, v),v):

k
J=<(u- (£ + 1)bv” +2i)bv P+ oFtl s,

, v=v(z,y) =y,

u=u(zy) =2+

because a({0,0) # 0. That is,

J = <u(u__ (kzl)bvk)_‘_vk'{-l(l_‘_vkwl((k ;"al)b)2),u>

= <yt >,

which proves the assertion.
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Remark 10 A germ of surface M in (C3,0) has a simple singularity of type Ap>1 when, in
local analytical coordinates (w,z,y), M is represented by

Ap i w? + 22+ 451 =0,

that is, M is a 2-fold covering with n{w,,y) = (,y), ramifying along z? + y*+1 = (.
The canonical resolution ¢ of each p of type Ay is well known: ¢~1{p) is composed by a
chain of k (—2)-curves (having k£ — 1 nodal intersections).

Theorem 6.4.3 Let C,...,C) pe curves of a surface M with

i) transversal intersections,

i) each C; free from multiple components and verifying O(CH) = L& @ LG, for line
bundles L' on M and .

i1) each CC with singular points of type 2% + y*t1 = 0, for any k = k(p,i) > 1. Let

T:M@CYD,...CN 5 M and G:= T*(F)

be the iterated 2-fold covering defined in §6.3 and the pullback of F of M. If F is in general
position relative to CV U UCW), then

n
X(G) = 2"x(F) - 2" ley(Ng) - 3 0,
i=1
In the particular case M = CP? and G are curves with even degree d(C®):
{1
X(9) = 2"X(F) - 2" H(d(F) +2) 3 d(CD).
i=1

Proof We first prove for n = 1. In this case we denote cV = C, m = m, ete. in the
notation introduced for definition of M(C). .
Applying Theorem 3.2.3 to G := ¢*(n*(F)) in M(C)

X(0) = co(M(C)) - Det(@) + Y. my(mg—1)
q€8ingR(G)

and we will compute each term. At first we compute the data of the singularities of G.
By the general position hypothesis on F

Det(glﬂ(c)u(m@_l(c)) = 2Det(F).

At the points p € C'— Sing(C) both the curve C and the surface M{C) are non-singular and
hence ¢ is a local isomorphism. By the general position hypothesis on F, if (u,v) is a local

coordinate for ¢ € (7 o ¢)"1(p)
(0 $)(u,0) = (u,0%) = (3,9)

with
C={y=0}, F:dly-2z)=0 1=12

and
G = ¢*n*(F) : 2wdv — fuVdu = 0.
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That is, ¢ is either a regular point of G or a reduced singularity of Morse type (with
Det(G,q) = 1 and my(my — 1} = 0). The second case occurs when F has a tangency
(I = 2) with C at p € C — Sing and the number of such points of tangency is

Y. tang(C,F,p) = tang(F,C)— > tang(¥,C,p)
peC~Sing(C) ' pESing(C)
= a(Ng) - C+C-C+Ky-C— Y tang(C,F,p),
PESing(C)

according to §2.4. By Remark 9 and the hypothesis on the singularities of C

tang(C, F,p) = k(p) + 1.

We conclude

Z Det(G,q) =a(Ng) - C+C-C+Kp-C - Z (k{p) +1).
ge{mod)~1{C—8ing(C)) pESing(C)

We consider now the singularities of G along (o ¢)~1(Sing(C)).

The first remark is that #*(F) in M(C) has exactly two separatrices at p € Sing(C) N
Sing(M(C)). In fact, in (z,y) local coordinates with C' = {a? + y*®+1 = 0}, M(C) :
w? + 2% + y*H1 = 0}, we can suppose that the leaf [ of F p = (0,0) is I = {y = h(z)},
with £(0) = 0 and A'(0) = A € C — {xv=1}. Then for n(w,z,y) = (z,y), =7I(I) =
{w? + 22(1 + h(z)) = 0}, with 1+ h(0) 5 0. With ¢(z) := 1 + h(z) the two separatrices of
m*(F) are w = +/—c(z)x.

Since there are two separatrices of #*(F) at p € Sing(M{(C)) and "5[117(0)— g-1(p) 18 an
isomorphism onto M(C) — {p}, then the divisor ¢~1(p;} is G-invariant.

Assertion: G has k(p) + 1 singularities ¢ of Morse type along ¢~ 1(p).

Proof of the assertion: Keeping the notation of the canonical resolution §6.2, we have

mo¢ = cogq, where 0 : M' — M is a blowing up at p, ¢ : M(C) = M’ is the projection
ramified along Cy. Let By = o~ }(p), in local coordinates given by o(t,y) = (ty,y) = (z,y)
and

G = (@ +y O = o) - 92y,

= o*({z% 4P = 0)) - 2B,
{12 + y*P)-1 = 0},

This means that, in local coordinates (¢, y), if k(p) =1
El N C,1 = {( V "“1:0): ("" Vv "']-, 0)}

and if k(p) > 2 By NCy = {(0,0)}. Since g : M(C) — M’ ramifies only along Cj, it does
not ramify over the point (£,) = (A~1,0) which is the intersection of the strict transform of
the leaf ! with B;. Therefore in M*(C) there are two copies of a singularity isomorphic to W
sdz + zds = 0 (see Figure 7 below).
Next steps of the canonical resolution are composed by blowing ups ¢ at points of C1NE;.
Such points are regular points of the strict transform of F by o. Therefore G has along the ®
G-invariant divisor ¢~1(p) a): 2 singularities isomorphic to sdz+2zds = 0 and b): singularities
at the normal crossings of ¢~1(p). But, by Remark 10, ¢~ (p) is composed by a chain of
k{p) (—2)-curves with k(p) — 1 normal intersections and the Assertion is proved.
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By the hypotheses on the singularities of C [BPV],
e2(M(C)) = 2c3(M) +C - C + Kt - C.

Then
X(@) = c(M(C))=Det(G)+ Y.  mylmg—1)
q€SingR(G)
= 2c(M)-Det(F)+ > mglmg—1)—c(Ng)-C
pESingR(.F)

= W(F) —alNg)-C

Now we prove the theorem by induction on n (the number of iterations in the definition
of the coverings M(CV, ..., C™)). Supposing the result is true up to n — 1 iterations

n—1
X(Gn-1) = 2" 1x(F) — 2" 2 (Ng) - Y CW)

i=1
and for G := G,
X(G) = 2x(Gn-1) —e1(Ng__)-(modro..om10ds_y)"}(CM).

Therefore

n—1
X(G) = 2°x(F)-2""ler(Ng)- Y oW -

i=1
—(modro..omp10¢p 1) c1i(Ng)-(mo..0mp.10 $n1)H(CM)
n—1
= an(f) —_ 2’1"101 (Nf) . E O('l) — 2‘?’6—-161 (Nj_') . C(n),
i=1

where in the last equality we use that () o ... o mp_1 © ¢p—1) is generically finite of degree
27—1 and the property

a(f*(L) - (D) = df)all)-D.
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7 Appendix A: Genera of fibers

In what follows, we denote by G? the self-intersection number C-C of a curve C in a surface
M.

Lemma 7.0.4 An irreducible curve C in M is a (=1)-curve if and only if C? < 0 and
Ky - C<0.

This Lemma is Proposition II1.2.2 of [BPV].

Lemma 7.0.5 (Zeriski, 0.)
Let M = 300 n,Cy (n; > 0, C reduced and irreducible) be o fiber of a connected fibration

given by f: M — 8. Then

i) M; - C; =0 for all 4,

i) if D = 31" kiCh, ki € Z, then D* <,

§i) D? = 0 in 4i) above if and only if D = rM,, with r € Q (that is, pD = gM, with
p#0,pq€Z)

This Lemma, is Proposition I11.8.2 of [BPV]. .
We recall that po(C) := 1 + 1(C? + C; - Kps) (the arithmetical genus) and g(C;) is the

genus of the normalization (geometrical genus).
Definition: The Dual Graph G4, of the singular fiber M; is defined by associating a): to

each component C; of M, a vertex v;, b): C; - Cj edges connecting the vertices v; and v; and

c): pa{Ci) — g(C;) loops around the vertex v;.
We denote the i-th Betti number of the graph Gy, by b;(Gay,), 1 =0, 1.

Lemma 7.0.6 (Xiao, G.) Let My, = > = n;Ci (n; > 0, C; reduced and irreducible) be a
fiber of a connected fibration f: M — S with g(M,) > 2.
Let byg, = b1(Gpr,) and sippose M is minimal. Then

m
9{My) > bag, + > _ 9(Ch),
i=1
with

m L m(Ci- ’f"’z.C-
bat, = - (pulC) — @) + ZELE T D)y,
i=1

Moreover, equality holds above if and only if M is free from multiple components.

Proof At first, remark that the topological Euler characteristic of the graph Gy, is
given by

PG T _
x(Gp,) =m — iz 22# ) _ > (palC:) — 9(Ch)),
=1

and therefore

but, = b1(Gar,) = bo(Gas,) — x(Gu,)
L~ X(GM,,),
that is,

m e SRL(Cr Y G
bas, = 3 (00 - oG + MLt B,y

=1
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as asserted.
We also remark that, by Zariski Lemma, 7.0.5,

(M)eg = (D_Ci)- O <o,

i=1 i=1
that is,
T m m
B -> >3- > Cy).
i=1 i=1 i
Also
29(Mg) ~ 2 = 2pa(My) —2 = 2pa(M;) — 2
= M4 M, Ky
= M, K.

We assert that .
(ii) Ms : KM = (Ms)red Ky = Z Oi - K.
i=1

To prove (i), it is enough to prove that Vi C; - Kjr > 0. Suppose by absurd, C; - Ks < 0.
Then if C? < 0 we conclude, by Lemma, 7.0.4, that C; is a (—1)-curve, contradicting the
minimality of Ms. If C} = 0, then by Zariski Lemma, C; = #M,. Hence, by our assumption
—“f-\"f} - Kp <0, and then M, - Kjr < 0, which gives the contradiction:

which proves (7).
Collecting the information above and using (i) and (1), we get:

m
2(Mg) —2=M; - Kng > (M)req-Kne =Y Ci+ Kpr

i=1

= i(zpa(ci)—cf)—zm
i=1

m

> Cpa(Ci)+Ci- S C5) - 2m

i=1 J#i

m ———
= Y 29(Ci) + 26y, - 2,

=1

v

that is,
m
9(Mg) 2 bag, + ) 9(Ch).

i=]
At last, remark that the equality in (i) above means by Zariski Lemma, (Ms)req = —}VMS
with NV > 1. If also there is equality in (%), then

1
ﬁMs Ky = (Ms)red Ky = M, - Ky = 29(Mg) —-2> 0:

which implies N = 1 and M; = (M,)¢q.
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8 Appendix B: Formulas for pencils

We give new proofs of some results found in [P] and [Pa] relating the genus of a generic
curve C of a pencil F in CP? with data of the pencil (d(F) and informationa about its

singularities).

Proposition 8.0.7 Suppose F is a pencil in CP? with irreducible generic curve. Let R(F)
be a resolution such that the reduced associated foliation is the fibration F. If C is a generic
curve of F, then

dF)+2)d(C) = > mpy,

pcSingR(F)
and 1 3
m
g =1+> > (- ==2=)(0).
2 PESIngTR(F) d(f) +2

where v, is the algebraic multiplicity of C' and its sirict transforms.

In particular, if the singularities of 7 N C are of radial type, then d(F) > 4 implies
g(C) = 2. The pencil in CP? generated by two smooth cubics with transversal intersections
has d(F) =4 and g(C) = 1.

Also by the formula, if d(F) + 2 > 3m, for all p € SingR(F) then ¢(C) > 2.

Proof  After a resolution R(F), the strict transform CofCisa generic fiber of the
fibration F and then C - C = 0. By the formula of sum of Poincaré- -Hopf indices of §2.4

and therefore

i 5] (N%) ’ 5 = (.
Denoting o : M — CP? the sequence of blowing ups of R(F), we have
€1 (N?) .C= (0¥er(Ng) - Z mply) - (o7(C) - Z vpEy),
peSingR(F)~SingF pESingR(f)—Sing:f

where the sums ) mpEp and ., 1, E, are relative to the strict transforms of F and C,
respectively, along R(F). That is,

a(Ng)-C— Z mpiyp = 0.
peSingRAF)

Which gives in CP? ,
@F)+2)dC)— > myrp=0.

peSingR(F)
To prove the second assertion, we write
d(C) = ZpESing'R.(f) Mplp
d(F) +2

and we recall that for a irreducible generic curve C of F

1
dC)=3(2~2(C)+ 3 w)
peSingR(F)
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according to Remark 4 of §4.3. This gives the result
3my

1
g(C)=1+3 Z (1 = w5 -
2 d(F)+ 2
peSingTRAF) ( ) +

3

Corollary 8.0.8 (of Proposition 8.0.7) Suppose F is a pencil in CP? with irreducible generic
curve. Suppose that all singularities of F with local meromorphic first integral are dicritical
points without singularities along the ezceptional line of a blowing up.

If C is a generic curve, then

2g(C) — 1 +d(0)) = (d(F) + 1)d(C) — > w(F)n(C),
pesing(F)

or equivalently

(O =1+7 ¥ -2 Ehm0)
peSing(F)

This corollary is found in [Pa] in the case where the singularities with meromorphic first

integral are of radial type.
Proof A dicritical singularity has m,(F) = vp(F) + 1, where 1,(F) is the algebraic

multiplicity of F. By Proposition 8.0.7
F)+1AC) = Y PO +dC) - 3, %)=

peSing(F) pESing(F)
= (d(F)+2)dC) - > mp(Flu(C)=0.
: peSing(F)
Since 1
dC)=32-20)+ 3w
peSingR(F)
we obtain

dC)~ Y. vp=-2(g(C) - 1+d(C))
peSingRAF)
and we conclude that
(d(F) + 1)d(C) — Z vp(Fvp(C) = 2(g(C) — 1 + d(C)).
peling(JF)
|

Corollary 8.0.9 (of Proposition 8.0.7)
Let F be a pencil of CP? with irreducible generic curve. Suppose that all the points p

with local meromorphic first integral are given in local coordinates (x,y) by:
w= Apzdy —ydr +wz, ApeEN,

where the 1-form wo vanishes with order at least two. If C denotes a generic curve of F,

then
2(9(C) - 1+d(C)) = (d(F) +1)d(C) = Y »(C),

peSing(F)
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or eguivalently

(0 =1+3 ¥ (O + 101 = 755) ~ Uy(0),

pESing(F)
Proof At a singularity w = Apzdy — ydz + we, C has smooth local branches of type
{z** —ciy + hot =0} with¢; #0and i =1,..., ¥p(C). The elimination of such base-points
amounts to A, blowing ups (the A,-th is done at a radial point), which gives

Z Mplp = Z (Ap + 1)25(C).
pESingR(F) pESing(F)

Since
Z Vp = Z Aptp(C),
pESingR(F) pESing(F)
dC)~ > Mp(C) =-2(g(C) — 1 +d(C)).

pESing(F)
Then
@AF)+2)d(C) - Y mpy = (d(F)+1)d(C)- 3 wp(C)+Hd(C) - 3 Mu(0)

pESingTR(JF) pESing(F) pESing(F)
= (d(F) + 1)d(C) -~ Z (C) —2(g(C) — 1 + d(C)) = 0.
pESing(F)

The second assertion is immediate using

EpeSing(f) (’\P + I)VP(C)
d(F)+2

| d(C) =
=

Example 8.0.10 Suppose F is a pencil in CP? with irreducible generic curve and singu-
larities with local meromorphic first integral of type: w = Mzdy — ydz + wy, Ap € N. Then

as proved . ) ;
9(C) =1+ 3 Z [(p +1)(1 ~ m) = 1Jp(C)
pESing(F)

The formula above implies that if d(F) > 4 then g(C) > 2. Moreover, if d(F} > 4 and
g(C) = 2 are given, then the formula implies that there is an upper bound to

2. Gy +1u(0)

pESing(F)
EL]

and hence that there is an upper bound to d(C), because as already remarked

40)=3@-2(@+ Y Am(O)). ﬁ
peSing(F)

If d(F) = 4 and the singularities with meromorphic first integral are of radial type
(Ap = 1), the formula implies g(C) = 1. If d(F) = 2 and the singularities with meromorphic
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first integral are of type w = 3zdy — ydz + wy, then also g(C) = 1 (these two examples
are realized by the elliptic pencil Fy; of in Example 4.2.6 and the elliptic pencil F5 of
Example 5.1.2). In these two cases the formula gives no upper bound to Epe Sing(F) vp(C)
and therefore we cannot assert that there is an upper bound to d(C) = %Epe Sing(F) vp(C).

I d(F) = 3 and the singularities with local meromorphic first integral are of radial
type (Ap = 1), the formula implies g(C) < 0 and since C is irreducible 9(C) = 0. Hence
2 pesing(F) Yo(C) = 10 and d(C) = 4.

If d(F) = 2 and the singularities with local meromorphic first integral are of radial type
(Ap = 1), the formula implies g(C) = 0, Zpesmy(}-) vp(C) = 4 and d(C) = 2. These condi-
tions are realized by the pencil generated by two smooth conics with transversal intersections.

If d(F) = 2 and for all singularities with local meromorphic first integral Ap = 2, then
the formula implies g{C) = 0, Zpesmg(f) vp(C) = 8 and d(C) = 6.

If d(F) = 1 and for all singularities with local meromorphic first integral Ap = 2, then
g(C) =0, Epesmg F) Up(C) = 2 and d(C) = 2. It is realized by the pencil gencrated by a
smooth conic § ané a double line 2L with .5 N L transversal.

Example 8.0.11 Consider homogeneous coordinates (zq : 1 : £3) in CP? and the pencils
Fp in CP? extending the foliation given in affine coordinates (z,y) = (B, 2) by w =
pzdy + ydz, p € N. Then d(F,) = 1 and F, has rational first integral

P
o = T1%2
P(zo 31 1 @2) = sy
0

that is, Fp is composed by generic curves C with g(C) = 0 (because C has a rational
parameterization) and d(C) = p + 1. Remark that the critical curves of Fp are given by
C1:=pLy + Ly and Cs := (p + 1)Ly where L; = {z; = 0}.

We assert that the generic curve C' of F, has

a) only one local branch at z := Ly N Ly, which is an ordinary cusp of order p given by

{zF — yP*! = 0} and
b} at w := La N Ly C has an unique smooth branch.
We remark that the assertion agrees with the genus formula:
20(C)=0=(p+1-1}{p+1-2)—p(p-1).
‘To prove the assertion, remark that in local coordinates around z, the foliation is given

by
w = (p+ 1)vdu — pudv + wy

and the local separatrices are generically of type vP¥! ~ tuP + h.ot = 0, £ € C*, that is an
ordinary cusp of order p. By a blowing up the strict transform of each separatrix is smooth
of type z = P, where ¢ = 0 is a local equation of the exceptional line. The foliation is

represented around w by
w = {p+ Dvdu — udv + w,

and the separatrices are generically of local type vP*! —tu = 0, ¢ € C*. By Proposition 8.0.7,
3o+~ D m— Y. mgyy = (d(Fp)+2)d(C) - > mpy =0
¢€8ingR(F ,2) g€ SingTRAT ) PESiIngR(F)
and denoting n,(C) and n,(C) respectively the number of local branches of C at 2z and w

we obtain
3(p +1) — ((p + 1)nz(C) + pn2(C)) — ((p + 210 (C)) = 0,

that is n,(C) = ny(C) = 1.
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Remark 11 We give a geometric interpretation for the formula of Corollary 8.0.9.
Let ¢ : C = C ¢ CP? be a normalization of C. Take a point ¢ € CP2 — C such that
i) the order of contact between any line L = p.g and C verifies v(L,C) = 1,(C), if

vp(C) > 1 and
ii) if p is a regular point of C' and L = p.q = T,,(C), then > pec (L, C) = 2.
Under these hypotheses, consider the set P=CP? of lines passing by ¢ and define:

'rrq:é'—}'P

7q(2) 1= P(x).q

where ¢(x).q is a line. The degree of the map 7, is d(C). At a point z € C' we can write,
in local analytic coordinate z with z(z) = 0, m,(2z) = 2™ f(2), with f(0) # 0. Defining
by := ng — 1, we obtain by Riemann-Hurwitz applied to gt

2(9(C) = 1) :=2(g(C) = 1) = =2d(C) + ¥ _ b,.
xea

If z € C is such that ¢(z) € Sing(C) and v is the local irreducible branch of C at ¢(z) such
that £ = ¢~ !(v), then b, = Vy(z)(7) — 1 (by the definition of () and the choice of ¢). By

the hypotheses on the singularities, y = {ty* — z = 0} ,t € C* is smooth and then b, = 0.
. Then the points with b, > 1 (ramification points for 7,) have regular images ¢(z) € C.
Since ¢ is a local isomorphism, the ramification of 7 is due to tangencies between L = ¢(z).q

and C at p. We conclude that, for L := ¢(z).q,
> by = > (gL C) —1).

zeC #(z)€C—-Sing(C)
Hence, for L := p.q,

20(C) -1 +d(0) = > (5(L,0)~1).
PEC—Sing(C)

Let (z,y) be affine coordinates of CP% — Ly, such that Le, N Sing(F) = 0. Suppose that
the differential equation representing F is

dy  P(z,y) ~
Te = Q@,1) ged (P,Q) = 1.

Consider now a fixed value % = @ € C such that the family of parallel affine lines
L, =C(1,0)+p peC?

contains a point ¢ € Lo, satisfying conditions i) and ii} for the definition of =, relativély to

the generic curve C' of F.
We consider now the map m, relative to such ¢ € L. Consider the projective curve given

in affine coordinates by
SH = {P("E:y) - BQ(m,y) = 0}‘

Then d(Sp) = d(F) + 1 and the (isolated) singularities of Sy have algebraic multiplicity
vp(Se) = vp(F) (by definition). The intersection Sy N C' is composed by a): regular points of
F at C with tangent 7,,(C) = L, for some  or b): singular points of F at C' (see Figure 8
below).
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Figure 8: The curve of tangencies S

Hence, as already proved,

209(C) ~1+d(C) = Y (1L, C)—1)
pEC—Sing(C)

and since C is generic, Sing(F) N C = Sing(C); that is,

20(C)~1+d(C) = Y 1(8,0)
pESing(Sg)
= Sp-C— D 1,(5,0)
PESing(Ss)

= [dF)+1DdC) - 3 1(8,0).
pESing(5s)

Since C has at p 14,(C) local branchs v = {ty*» — 2 = 0} and the tangent at p of Sy is
given by {y — pz = 0}, we obtain 1,(8p, C) = Vp(Sg)up(C) = 1,(C) and the formula

29(CY - 14+d(0) = (dF) +1)d(C) - S u(0),
peSing(F)

as desired.
Recall the projective duality D which associates to each projective line a point:

D{{azg + bz; +czp =0}) = (a:b:¢) € CP2

Restrict to the tangent lines of a plane curve ¢ the map D is well-defined at singular points
of C and, if C is not a line, ¢’ = D(C) is a curve called the dual curve of C. As it is known
[GH], the degree d(C’) of the dual curve C' of a curve C' having smooth local irreducible
branchs is d(C") = 2(¢(C) — 1+ d(C)). Hence what was proved above is that :

dC) = @F) +1)dC) - > 5O
peESingRAF)

This fact is a cornerstone of the proof of Corollary 8.0.9 (and generalizations) found in [Pa).
In [GR] there are generalizations of these geometric ideas.
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