MR2142243 (2006d:32043) 32S65 (11F41 14G35 37F75)
Mendes, L. G. (BR-IMPA); Pereira, J. V. (BR-IMPA)
Hilbert modular foliations on the projective plane. (English summary)

Let \mathbb{D} be the open unit disc in the complex line \mathbb{C}. The group of holomorphic diffeomorphisms of the disc coincides with the group of Möbius transformations $\text{PSL}(2, \mathbb{R})$. Let d be a squarefree positive integer and let \mathcal{O}_d be the ring of integers in $\mathbb{Q}[\sqrt{d}]$. Let Γ_d be the discrete subgroup of $\text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R})$ obtained by a twisted diagonal embedding of $\text{PSL}(2, \mathcal{O}_d)$: the image of an element M in $\text{PSL}(2, \mathcal{O}_d)$ is $(M, \sigma(M))$ where $\sigma(\sqrt{d}) = -\sqrt{d}$.

The Hilbert modular surface S_d associated to this construction is the quotient of the bidisc $\mathbb{D} \times \mathbb{D}$ by the action of Γ_d. This surface is singular but there is a natural compactification \overline{S}_d of it. The foliation of the bidisc by horizontal lines is invariant under the action of Γ_d and defines an algebraic (singular) foliation on the projective surface \overline{S}_d.

These Hilbert modular foliations play an important role in the recent classification of holomorphic foliations of compact Kähler surfaces by Brunella, Mendes and McQuillan. The main goal of this paper is to describe explicitly the foliation in the case where \overline{S}_d is the projective plane $\mathbb{P}^2(\mathbb{C})$.

The authors focus on the case $d = 5$ (and some other related examples). They obtain a beautiful and complete description with explicit equations and nice pictures linked to the geometry and invariant theory of the icosahedral group.

Reviewed by Serge Cantat

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2006, 2007