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Abstract The idea of the proof of the classical Noether-Fano inequalities can be

adapted to the domain of codimension one singular holomorphic foliations of the pro-

jective space. We obtained criteria for proving that the degree of a foliation on the

plane is minimal in the birational class of the foliation and for the non-existence of

birational symmetries of generic foliations (except automorphisms). Moreover, we give

several examples of birational symmetries of special foliations illustrating our results.
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1 Introduction

The classical Noether-Fano inequalities give information on the multiplicities of singu-

larities of the generic element of a homaloidal system, in terms of the algebraic degree of

the associated birational map (Section 4.1.2 gives an example). They are fundamental

in the Sarkisov’s program of factorization of birational transformations and are used to

prove that birational transformations of some Fano varieties are in fact isomorphisms.

We have adapted the general idea of the proof (cf. [9]) to codimension one singular

holomorphic foliations. We call the attention to the fact that even in the case when a

foliation is a pencil of algebraic curves, the study that we developed cannot be reduced

to the classical one. The reason is that there is no general relation between the data of

the curves (degrees, singularities) and the data of the foliation, as shown by the works

on the Poincaré problem for pencils (see e.g. [6] and references therein).
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1.1 General result

Along all the paper we deal with complex codimension one holomorphic foliations,

whose singular sets have codimension greater or equal to 2 (foliations, for brevity).

For a foliation F ′ of a complex algebraic variety N and for a birational transformation

χ : M− → N , it is well-defined the strict transform of F ′ in M , denoted F = χ−1
∗ (F ′).

Namely, it is the unique foliation which extends (χ |U )∗(F ′| χ(U)), for U ⊂ M the Zariski

open set where χ restricts as an isomorphism.

Let us consider two notions on foliations which will be used along all this work.

Firstly, as usual the degree of a foliation F of the projective space is defined as the sum

of orders of contact of a straight line with the codimension one leaves of F . Secondly,

a natural notion of multiplicity:

Definition 1 Let σ = σΣ be a blowing up of a smooth center Σ, with exceptional

divisor EΣ = σ−1(Σ). If F = σ−1
∗ (F ′), there is an isomorphism:

NF = σ∗Σ(NF ′)⊗ (−αEΣ), (1)

for an integer α ≥ 0 (α ≥ 1 if Σ ⊂ sing(F ′)). By definition l(Σ,F ′) := α.

Section 2.1 is dedicated to this theorem-definition. We want to emphasize that

even in dimension two, there is fundamental difference between the behavior of l(p,F)

and the behavior of the usual multiplicity of a curve at a point; in fact, l(p,F) may

increase after blowing ups, that is, it may happens that l(q, σ−1
∗ (F)) > l(p,F), where

q ∈ σ−1(p). Section 2.1.1 exemplifies this fact with dicritical and nilpotent singularities

of foliations. This makes difficult the adaptation of all Sarkisov’s program to foliations.

In higher dimension, birational transformations χ : CPN− → CPN can be fac-

torized in a weak sense, by Hironaka’s elimination of indeterminations Ind(χ). There

is a morphism σ : M → CPN , where σ := σ1 ◦ . . . ◦ σk is a finite sequence of blow-

ing ups σi along smooth centers Σj ⊂ Ind(χ), codim(Σj) ≥ 2 and there is morphism

f : M → CPN such that

χ = f ◦ σ−1. (2)

In higher dimension, we say that a smooth variety Σ ⊂ Ind(χ) has divisorial

birational image by χ factorized as in (2), if the exceptional divisor EΣ introduced

at some step of the sequence σ has a divisorial image by f . The classical cubo-cubic

Cremona transformation of CP 3 has a smooth connected curve of indetermination

with divisorial birational image, see Section 4.2.1. Differently, Section 4.2.2 recalls

that some centers contained in the indetermination set of the standard cubic Cremona

transformation of CP 3 have no divisorial birational images. Their distinct effect on

foliations is described in Section 4.2. With these notations, we can state:

Theorem 1 Let χ : CPN− → CPN , N ≥ 2, be a birational transformation having

a factorization χ = f ◦ σ−1 as in (2). Let F and F ′ be foliations of CPN with F =

χ−1
∗ (F ′).

i) Suppose that all Σj ⊂ Ind(χ) having divisorial birational image by χ verify:

l(Σ1,F) ≤ (q1 − 1) · d(F) + 2

N + 1
and (3)

l(Σj , (σ1 ◦ . . . ◦ σj−1)
−1
∗ (F)) ≤ (qj − 1) · d(F) + 2

N + 1
, qj := codim(Σj), ∀j ≥ 1. (4)
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Then d(F) ≤ d(F ′).
ii): Supposing i), then d(F) = d(F ′) is equivalent to equalities in (3) and (4).

Several examples for this result are given in Sections 4.1.2 and 4.2.3.

We remark that the classical Noether-Fano inequalities give more information on

the centers Σj than Theorem 1 (cf. Examples 9.1.4 of [7]). But this extra information

depends on Nefness properties which are lost, in general, in the adaptation to foliations.

1.2 Results in dimension two

When we particularize our result to dimension two, any indetermination point has

divisorial birational image, i.e. a curve. Also, in the factorization (2), f is a sequence

of blowing ups of points.

Moreover, after finitely many blowing-ups, the strict transform of any foliation has

at most reduced singularities (e.g. [1]). For reduced singularities the multiplicity defined

in (1) is at most one and does not increase under extra blowing-ups.

Let us introduce the notion of birational degree of F , as the minimum degree of

foliations of a projective space which can be birationally transformed into F .

We shall adopt a simplifying notation (detailed in Section 2.3), where l(p, σ−1
∗ (F))

simplifies to l(p,F). An immediate consequence of Theorem 1-i) is:

Corollary 1 Let F in CP 2 with l(p,F) ≤ d(F)+2
3 , ∀p ∈ sing(F) as well as for all

singularities of foliations of each step of a reduction of singularities of F .

Then d(F) is the birational degree.

Corollary 2 Let F in CP 2 with d(F) ≥ 2 and l(p,F) = 1, ∀p ∈ sing(F) as well as for

all singularities of foliations of each step of a reduction of singularities of F . Suppose

there are a birational map χ : CP 2− → CP 2 and a foliation F ′ with F = χ−1
∗ (F ′)

and that d(F) = d(F ′).
Then in fact χ is an isomorphism of CP 2.

In particular, if F has a birational symmetry χ−1
∗ (F) = F of a generic foliation,

Corollary 2 asserts that it is an automorphism. This is a weaker version of a result of

[2], [16] and [3], asserting that the group of birational symmetries of a reduced foliation

with maximal foliated Kodaira dimension κ = 2 (cf. [12], [1], [11]) coincides with its

group of automorphisms and is a finite group.

At last, an application to pencils of curves. In his classical lectures on pencils ([18]),

H. Poincaré obtained, in particular cases, bounds on the geometrical genus g(C) of the

generic curve of a pencil F in terms of the data of the foliation. For instance, we can

deduce from his formulae that if at the base-points of F (and their infinitely near

points) l(p,F) ≤ d(F)+2
3 , then g(C) ≥ 1. The particular case when the base-points of

F are of radial type xdy − ydx + h.o.t (i.e. l(p,F) ≤ 2) and d(F) ≥ 4 was considered

by him in detail. With hypotheses not only on base-points but on all the singularities

we easily prove:

Corollary 3 If l(p,F) ≤ d(F)+2
3 for all singular points of a reduction of singularities

of a pencil of curves F , then g(C) ≥ 1. In particular, generic curves C of pencils

with d(F) ≥ 4 have g(C) ≥ 1, provided that each singularity of the pencil is of type

λxdy − ydx + h.o.t, with λ = λ(p) 6= 0.
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The third example of Section 4.1.2 gives the birational degrees of pencils of curves

with g(C) = 1, for which l(p,F) =
d(F)+2

3 at the base-points.

2 Background for the proofs

2.1 Remarks on l(Σ,F)

The isomorphism in (1) can be seen as follows: take a rational 1-form Ω with zeroes of

codimension at least two inducing F ′ and consider the divisor of zeroes of its pullback

(σ∗Σ(Ω))0 = α EΣ , α ≥ 0. This means that σ∗Σ(N∗
F ′) = N∗

F ⊗ (−αEΣ), where N∗
F ′ is

the co-normal line bundle. Dualizing it we get (1).

If e is a generic line of the ruling of EΣ then:

NF · e = [σ∗Σ(NF ′)⊗O(−l(Σ,F ′) · EΣ)] · e = l(Σ,F ′).

When dimC(Σ) ≥ 1 this informs us that l(Σ,F) can be computed as

l(Σ,F) = l(p, Σ,F) := ord E (σ∗Σp
(ηp))0, (5)

where ηp is a local holomorphic 1-form representing F around p, Σp := (Σ, p), and p

belongs to the open dense set V ⊂ Σ where l(p, Σ,F) has minimal value. By other

side, l(p, Σ,F) does not depend on the local 1-form ηp, just on F , because another

local 1-form defining F is of type g · η, for g ∈ O∗.

2.1.1 l(p,F) can increase after blowing ups

A useful remark on surfaces is that, when the exceptional curve of the blowing up of p

is not invariant by σ−1
∗ (F), then l(p,F) = m(p,F) + 1, where m(p,F) is the order of

the first non-zero jet of a local 1-form representing F ; otherwise, l(p,F) = m(p,F).

Let us exemplify this, starting with η1 := 2xdy − ydx = 0. We blow up with

σ(t, y) = (ty, y) = (x, y), obtaining σ∗(η1) = y · (tdy − ydt), where y = 0 is the

exceptional divisor, so l(p,Fη1) = 1. Re-start now with η2 := tdy− ydt and blow up it

with σ(t, u) = (t, tu) = (t, y), obtaining σ∗(η2) = t2 · du; so l(p,Fη2) = 2.

For another example, start with a singularity η1 := (y+xy)dy+(y2−x3)dx = 0 with

nilpotent linear part. Let σ(x, t) = (x, xt) = (x, y) and σ∗(η1) = x·[(t2+2xt2−x2)dx+

(tx+x2t)dt], that is l(p,Fη1) = 1. Again blow up η2 := (t2+2xt2−x2)dx+(tx+x2t)dt

with σ(x, u) = (x, xu) = (x, t), obtaining l(p, η2) = 2, because σ∗(η2) = x2 · [(u2(2 +

3x)− 1)dx + x(1 + ux2)du].

2.2 Degree of a foliation and the normal line bundle

Let F be foliation of CPN . Take Ω a regular integrable section of Ω1
CP N ⊗NF with

zero set of codimension greater or equal to 2, inducing the foliation F , where Ω1
CP N

is the sheaf of 1-forms and NF is the normal line bundle.

Let φ : L → CPN be the inclusion of a generic straight line L and consider

the restriction φ∗(Ω), with divisor of zeroes (φ∗(Ω))0. By definition of degree of F ,

d(F) = deg (φ∗(Ω))0. Since φ∗(ω) is a regular section of Ω1
L ⊗ (NF )|L, then

d(F) = deg(Ω1
L) + NF · L = −2 + NF · L (6)
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and it follows:

NF = O(d(F) + 2). (7)

2.3 Simplifying notations used in the proofs

In general we deal with a finite sequence of blowing ups of smooth centers. A first

blowing up of Σ1 by σ1 := σΣ1 produces the strict transform σ−1
1 ∗(F

′); a second

blowing up σ2 := σΣ2 produces from it a new strict transform σ−1
2 ∗(σ

−1
1 ∗(F))) =

(σ1 ◦ σ2)
−1

∗(F
′) and so on. From (1), we obtain isomorphisms:

N(σ1◦σ2)
−1

∗(F ′) = σ∗2(Nσ−1
1 ∗(F

′))⊗O(−l(Σ2, σ−1
1 ∗(F

′)) · EΣ2) =

= (σ2 ◦ σ1)
∗(NF ′)⊗ σ∗2 O(−l(Σ1,F ′) · EΣ1)⊗O(−l(Σ2, σ−1

1 ∗(F
′)) · EΣ2).

Such notation becomes cumbersome, so we shall adopt the following simplifying nota-

tion:

N(σ1◦σ2)
−1

∗(F ′) = (σ1 ◦ σ2)
∗(NF ′)⊗O(−l(Σ1,F ′) · EΣ1)⊗O(−l(Σ2,F ′) · EΣ2).

For a sequence of blowing ups σ = σ1 ◦ . . .◦σk at centers Σj , j = 1, . . . k, starting with

F ′ and arriving at σ−1
∗ (F) with adopt in the proofs the simplifying notation:

Nσ−1
∗ (F ′) = σ∗(NF ′)⊗O(−

k∑
j=1

l(Σj ,F ′) EΣj
). (8)

At last, there is a well-known isomorphism K
M̂

= σ∗(KM )⊗O((q−1)EΣ) relating

the canonical bundles of a N -dimensional variety M and of the blown up variety M̂

(along a codimension q smooth subvariety Σ ⊂ M), which can be seen by considering

the zero divisor of the pullback by σΣ of a local holomorphic N -form. Again, for a

sequence of blowing ups at centers Σj we adopt a simplifying notation:

K
M̂

= σ∗(KM )⊗O(

k∑
j=1

(qj − 1)EΣj
), (9)

3 Proofs

3.1 Proof of Theorem 1:

Let F ′ in CPN and χ : CPN− → CPN such that F = χ−1
∗ (F). Let χ = f ◦ σ−1 be

a factorization as in (2), with σ : M → CPN , f : M → CPN . In M there is a foliation

G such that:

G = σ−1
∗(F) and G = f−1

∗(F
′),

We keep the simplifying notations (8) and (9), which we write in divisorial form:

NG = σ∗(NF )−
∑

j

l(Σj ,F) EΣj
and KM := σ∗(KCP N ) +

∑
j

(qj − 1) · EΣj
.
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By other side:

NG = f∗(NF ′) + G and KM = f∗(KCP N ) + G′

where the supports of the divisors G and G′ are contained in the support of the

exceptional divisor of f . Consider now the divisor with rational coefficients:

KM +
N + 1

d(F) + 2
·NG . (10)

By one side, (10) is isomorphic to:

σ∗(KCP N +
N + 1

d(F) + 2
NF ) +

∑
j

[qj − 1− N + 1

d(F) + 2
· l(Σj ,F)] EΣj

, (11)

and by another side (10) is isomorphic to:

f∗(KCP N +
N + 1

d(F) + 2
NF ′) + G′ +

N + 1

d(F) + 2
·G. (12)

Now take a generic straight line r ⊂ CPN and consider its total transform f∗(r) ⊂ M .

Thanks to the Projection Formula, we get:

f∗(r) ·G = r · f∗(G) = 0,

f∗(r) ·G′ = r · f∗(G′) = 0.

Therefore intersecting f∗(r) with (12), using the isomorphism (7) applied to F ′ and

the fact that KCP N = −(N + 1)H, where H is a hyperplane, we get:

f∗(r) · f∗(KCP N +
N + 1

d(F) + 2
NF ′) = −(N + 1) +

N + 1

d(F) + 2
(d(F ′) + 2), (13)

But we can intersect f∗(r) with the divisor in (11), which is isomorphic to (12):

f∗(r) · {σ∗(0) +
∑

j

[qj − 1− N + 1

d(F) + 2
· l(Σj ,F)] EΣj

} (14)

and putting together these facts we conclude that:

−(N +1)+
N + 1

d(F) + 2
(d(F ′)+2) =

∑
j

[qj − 1− N + 1

d(F) + 2
· l(Σj ,F)] f∗(r) ·EΣj

. (15)

By the Projection Formula, f∗(r) ·EΣj
= r · f∗(EΣj

) ≥ 0 and this number is positive

if and only if Σj ⊂ Ind(χ) has divisorial birational image.

By hypothesis for Σj ∈ Ind(χ) with divisorial image:

l(Σj ,F) ≤ (qj − 1) · d(F) + 2

N + 1
⇔ qj − 1− N + 1

d(F) + 2
l(Σj ,F) ≥ 0. (16)

Therefore (15) gives, as asserted in i):

−(N + 1) +
N + 1

d(F) + 2
(d(F ′) + 2) ≥ 0 ⇔ d(F) ≤ d(F ′).
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For the part ii), suppose additionally that d(F) = d(F ′); we obtain from (15):

0 =
∑

j

[qj − 1− N + 1

d(F) + 2
· l(Σj ,F)] f∗(r) · EΣj

. (17)

But (16) holds for all Σj ⊂ Ind(χ) with f∗(r) · EΣj
> 0. Then (17) implies for all

these Σj :

qj − 1− N + 1

d(F) + 2
· l(Σj ,F) = 0. (18)

Reciprocally, supposing additionally (18) for all centers with divisorial image, then (15)

gives d(F) = d(F ′). ut

3.2 Proofs of Corollaries

The hypotheses of Corollary 2 imply: l(p,F) ≤ 1 < 4
3 ≤ d(F)+2

3 , ∀p ∈ Ind(χ),

which are the conditions of Theorem 1-i). If d(F) = d(F ′), then Theorem 1-ii) implies

l(p,F) =
d(F)+2

3 , ∀p ∈ Ind(χ). The conclusion is that the set Ind(χ) must be empty.

Since CP 2 is a minimal surface, χ must be an isomorphism, as desired.

For the proof of Corollary 3, observe that d(F) is the birational degree of F , thanks

to Corollary 1. By other side, at a base-point of a pencil or at some infinitely near point,

l(p,F) ≥ 2 (cf. Section 2.1.1). Therefore d(F) ≥ 4. By absurd, suppose that F is a

pencil of rational curves, i.e. g(C) = 0. Then it is birationally equivalent to the pencil

of straight lines, whose degree as foliation is zero: a contradiction.

For the particular case, note that the blowing ups of singularities of type ω =

λxdy−ydx+h.o.t produce points with l(q,F) ≤ 2. If d(F) ≥ 4, then l(p,F) ≤ d(F)+2
3 .

4 Cremona maps, their effect on foliations and examples

The degree as foliation of a pencil of hypersurfaces of degree k is given by Darboux

formula. For Vi the non-reduced components with multiplicity µi and support |Vi|:

d(F) = 2k − 2−
∑

i

deg(|Vi|) · (µi − 1), (19)

From this we can compute, in some cases, the degree as foliations of the strict trans-

forms of pencils. But Darboux formula is useless for codimension one foliations in

general. For this reason, Propositions 1, 2 and 3 (below) are useful.

4.1 Dimension two

4.1.1 Standard quadratic map

Any Cremona map of the plane is a composition of standard quadratic maps and linear

transformations. Therefore it is useful the following remark:
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Proposition 1 Let F be a foliation of CP 2 and Q be the standard quadratic transfor-

mation, with Ind(Q) given by three non-colinear points p1, p2, p3 in the plane. Denote

Ind(Q−1) = {p′1, p′2, p′3}. Then

i): d(Q∗(F)) = 2 · d(F) + 2−
∑3

i=1 l(pi,F) and

ii): l(p′i, Q∗(F)) = d(F)+2−l(pj ,F)−l(pk,F), where i, j, k ∈ {1, 2, 3} are distinct.

Proof

If σ denotes the composition of three blowing ups at p1, p2, p3, the (−1)-curves

rij = σ∗(rij)−Ei−Ej , for rij := pipj , are the exceptional curves of f in Q = f ◦σ−1.

By (6) in Section 2.2, d(Q∗(F)) = −2 + NQ∗(F) · L, where L is a straight line. Recall

that L = f∗(σ
−1
∗ (S)), where S is a smooth conic passing by p1, p2, p3 (i.e. belonging

to the homaloidal system of Q). Then NQ∗(F) · L can be computed as:

NQ∗(F) · L = [σ∗(NF )−
3∑

i=1

l(pi,F)Ei] · σ−1
∗ (S),

because the rij do not intersect σ−1
∗ (S) = σ∗(S)−

∑3
i=1 Ei. Then as asserted in i):

d(Q∗(F)) = −2 + 2 · (d(F) + 2)−
3∑

i=1

l(pi,F).

For proving ii), with rjk := f−1(p′i) (i, j, k ∈ {1, 2, 3} are distinct), write:

l(p′i, Q∗(F)) = [f∗(NQ∗(F))− l(p′i, Q∗(F))rjk] · rjk. (20)

We assert that this intersection (20) can be computed as:

[σ∗(NF )− l(pj ,F)Ej − l(pk,F)Ek] · rjk, (21)

thanks to Ei · rjk = 0, Ej · rjk = 1, Ek · rjk = 1 and the isomorphism:

f∗(NQ∗(F))− l(p′i, Q∗(F))rjk − l(p′j , Q∗(F))rik − l(p′k, Q∗(F))rij =

= σ∗(NF )− l(pi,F)Ei − l(pj ,F)Ej − l(pk,F)Ek,

which express the factorization χ = f ◦σ−1. Then from (20) and (21),we get as desired:

l(p′i, Q∗(F)) = d(F) + 2− l(pj ,F)− l(pk,F).

ut
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4.1.2 Examples in dimension two

Modular foliations The Hilbert modular foliations are pairs of singular foliations which

appear after compactification and desingularization of the quotient of the bidisc ∆×∆

by groups of arithmetical nature. They have a very special position in the classification

of [1], having κ = −∞. After the quotient, the involution which sends the horizontal

discs to the vertical ones becomes a birational involution transforming one modular

foliation into the other. In [13] there is an explicit description of a pair of modular

foliations in the projective plane with degrees five and nine, denoted H5 and H9. There

is a degree five birational involution χ with H9 = χ∗(H5) and χ is a composition χ =

Q3 ◦Q2 ◦Q1 of three standard Cremona transformations, with Ind(Q1) = {a1, a2, a3},
Ind(Q2) = {b1, b2, b3}, Ind(Q3) = Q2(Ind(Q1)), for ai 6= bj (more about χ in the next

Example). The foliations H6 = Q1∗(H5) and H8 = (Q2 ◦Q1)∗(H5) have degree six

and eight, resp. . It is not asserted in that paper that 5 is the birational degree of H5,

but we know that this is true, thanks to Corollary 1. In fact, all singular points ofH5 are

either reduced or radial, that is, l(p,H5) ≤ 2 <
d(H5)+2

3 . Also we remark that H6 has

a point with l(p,H6) = 3 >
d(H6)+2

3 ; that H8 has a point with l(p,H8) = 4 >
d(H8)+2

3

and that H9 has points with l(p,H9) = 4 >
d(H9)+2

3 .

Also in [13] there is a pair of modular foliations H2 and H3, of degrees two and

three resp obtained from H5 and H9 by taking quotient with their symmetry group.

H2 is not birationally equivalent to a linear foliation or a degree zero foliation (this can

be proved directly by considering the leaves of such foliations or as consequence of the

birational classification of [1]). Unhappily this fact is not a consequence of Corollary

1, because H2 has an infinitely near point with l(p) = 2 >
d(H2)+2

3 . This shows that

the condition of Corollary 1 is just a sufficient condition, not a necessary one. Also H3

has an infinitely near point with l(p) = 2 >
d(H3)+2

3 and H3 is equivalent to H2 by a

birational involution.

Pencil contained in a homaloidal net It is known that the general Geiser involution

(denoted χ8 is given by a homaloidal system W8 of octics C8 having triple points at

seven general points qi. It is known that the Cremona involution χ = Q3 ◦ Q2 ◦ Q1

in the previous Example is a degenerate Geiser involution, whose homaloidal system

has a fixed part of degree three. So χ5 := χ is associated to a net of quintics C5 with

double points at six points pj in general position. Both exemplify the classical Noether

inequalities, which asserts that ν(qi, C8) > 8
3 and ν(pi, C5) > 5

3 for some i, j. Suppose

now that we fix one extra point p7 and consider the pencil F ⊂ W5 of quintics passing

doubly by p1, . . . p6 and simply by p7. Darboux’ formula gives d(F) = 8. We can

obtain F from a pencil of lines F1 applying three times Proposition 1 and the previous

factorization χ = Q3 ◦ Q2 ◦ Q1, we get: d((Q1)∗(F1)) = 2 and l(ai, (Q1)∗(F1)) = 2,

d((Q2 ◦Q1)∗(F1)) = 6 and l(bi, (Q2 ◦Q1)∗(F1)) = 4, d((Q3 ◦Q2 ◦Q1)∗(F1)) = 8 and

l(Q2(ai), (Q3 ◦Q2 ◦Q1)∗(F1)) = 4, for i = 1, 2, 3.

The Halphen pencils These are pencils Fl≥2 generated by a singular elliptic curve of

degree 3(l − 1), having 9 points with ν(C, p) = l − 1, and by a cubic C3 taken with

multiplicity l − 1. They were considered in [14] as foliations with κ = 1 (∀l ≥ 2).

We consider in this example generic Halphen pencils, in the sense that (l − 1)C3 is

the unique non-reduced element in the pencil, the nine base-points belong the plane

and extra singularities are of Morse type d(xy) = 0. As foliations, d(Fl) = 3l − 2, by
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Darboux formula. The singularities at the base-points have l(pi,Fl) = l, ∀i = 1, . . . , 9:

in fact, representing locally (l−1)C3 as xl−1 = 0, we see that the algebraic multiplicity

of the holomorphic 1-forms

x2(l−1) · d(

∏l−1
j=1(y − cix)

xl−1
)

representing Fl at the base points is m(pi,Fl) = l − 1. Their blowing ups produce

non-invariant exceptional divisors, thanks to the supposition that there are 9 distinct

base-points in the plane. As remarked in Section 2.1.1, l(pi,Fl) = (l − 1) + 1 = l.

Therefore any p ∈ sing(Fl) has l(p,Fl) ≤ l = 3l−2+2
3 and Corollary 1 asserts that

3l − 2 is the birational degree of Fl.

Now consider a standard quadratic transformation Q acting in a Halphen pencil

Fl, with {q1, q2, q3} = Ind(Q). If at least one of the qi is not chosen at a base-point of

Fl then

d(Q∗(Fl)) = 2(3l − 2) + 2−
3∑

j=1

l(qj ,Fl) > 6l − 2− 3l = 3l − 2,

by Proposition 1; so the degree is increased. But if all qj are chosen among the base-

points, then d(Q∗(Fl)) = 2(3l− 2) + 2− 3l, that is, the degree is preserved. The same

Proposition gives in this case that the contractions of the strict transforms qiqk of the

three lines qiqk introduce singularities rk of Q∗(Fl) with:

l(rk, Q∗(Fl)) = (3l − 2) + 2− 2l = l.

Examples from [10] We find there a 1-parameter family of degree 4 foliations Fλ, with

λ ∈ CP 1, for which κ = 0. We can assert that the birational degree of such examples

is 4, thanks to the fact that the singularities of Fλ are either reduced or radial, that is,

l(p,Fλ) ≤ 2 =
d(Fλ)+2

3 . By other side, it is remarked in that paper that Fλ = Π∗(Gλ)

where Gλ are foliations of the plane with degree 3 and Π(x, y) = (x+y, x y). Of course

Π is not birational. Such Gλ has a singular point with l(p,Gλ) = 2 > 3+2
3 and indeed

the author uses a standard quadratic transformation Q in order to obtain Q∗(Gλ) with

degree 2.

Examples from [15] Let us compute the birational degree of the pencil Fk (∀k > 3) in

CP 2 generated by C1 := {xk
0−xk

1 = 0} and C2 := {xk
1−xk

2 = 0} (such pencils appear in

[15] and have κ = 1). The pencil contains C3 := C1+C2 := {xk
0−xk

2 = 0}. By Darboux

formula (19), d(Fk) = 2 · k − 2, because there are no multiple components. By other

side, the algebraic multiplicity of the 1-forms d(xk − yk) = kxk−1dx− kyk−1dy which

induce the foliation near the singular points {p1, p2, p3} of C1, C2 and C3 is m(p,Fk) =

k − 1 and so l(pi,Fk) = k − 1 > 2k
3 . The standard quadratic transformation Q with

Ind(Q) = {p1, p2, p3} produces Q∗(Fk) = Gk of degree k + 1. In fact, Proposition 1

gives d(Q∗(Fk)) = 2 · (2k − 2) + 2− 3 · (k − 1) and

l(qi, Q∗(F)) = d(F) + 2− l(pj ,F)− l(ps,F) = 2, i, j, s ∈ {1, 2, 3}.

Since the fundamental lines {x0 = 0}, {x1 = 0}, {x2 = 0} of Q are not F-invariant, the

singular points qi of Q∗(F) introduced by their contractions are radial points, locally

given as xdy − ydx + h.o.t = 0. Since k + 1 < 2k − 2 for k > 3, we have obtained a

reduction of degree of the foliation and thanks to Corollary 1 this degree k + 1 cannot

be birationally decreased.
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Pencils of 3k-tics invariant by standard Cremona transformation We give now a pen-

cil of 3k-tics Fk (∀k ≥ 1) where each curve is invariant by the standard Cremona

transformation and where l(pi,Fk) = 2k =
d(Fk)+2

3 (these assertions can be checked

directly or with the software Maple):

txyz[x2(k−1)yk−1 + x2(k−1)zk−1 + y2(k−1)xk−1 + y2(k−1)zk−1 + z2(k−1)xk−1 +

z2(k−1)yk−1] + x2k(yk + zk) + y2k(xk + zk) + z2k(xk + yk) = 0.

Coverings of pencils in the plane Take f(x : y : z) = (x2 : y2 : z2). By composing with

f , we obtain from the next pencil of cubics F3, the pencil of sextics F6:

F3 : x2(y + z) + y2(x + z) + z2(x + y) + txyz = 0, F6 : x4(y2 + z2) + y4(x2 + z2) +

z4(x2 + y2) + ty2z2x2 = 0.

Each sextic is invariant by the standard Cremona map in the plane. We compute

at the indetermination points pi: l(pi,F6) = 3. Darboux formula (19) asserts d(F6) =

2(6) − 2 − 3 = 7, since for the parameter t = ∞ the curve V : y2z2x2 = 0 is a cubic

with multiplicity 2. So l(pi,F6) =
d(F6)+2

3 .

4.2 Higher dimension

4.2.1 Cubo-cubic Cremona transformation

The cubo-cubic Cremona transformation χ is a birational involution of CP 3, given

by the four 3 × 3 minors of a 3 × 4 matrix of linear forms. The indetermination set

Ind(χ) is a smooth (connected) twisted sextic C6 of genus 3. Lines and planes are sent

respectively to twisted cubics intersecting Ind(χ−1) in eight variable points and cubic

surfaces passing simply by Ind(χ−1). Its factorization χ = f ◦ σ−1 is very simple (and

characterizes the cubo-cubic transformation among the Cremona maps of CP 3 [8]):

σ : M → CP 3 is just one blowing up along Ind(χ) and f is the contraction of a surface

S ⊂ M to a curve C′
6 = Ind(χ−1) isomorphic to C6. Where S is the strict transform

of an octic S passing triply along C6. This surface S is the scroll of trisecant lines of

C6. Denoting E = σ−1(Ind(χ)), then χ∗(Ind(χ)) = f∗(E) is again an octic surface

passing triply by C′
6, the scroll of trisecants of C′

6. Keeping these notations:

Proposition 2 Let F be a foliation of CP 3. Let χ denote the cubo-cubic Cremona

transformation of CP 3. Then

i): d(χ∗(F)) = 3 · d(F) + 4− 8 · l(Ind(χ),F).

ii): l(Ind(χ−1), χ∗(F)) = d(F) + 2− 3 · l(Ind(χ),F).

Proof

For i), start with d(χ∗(F)) = −2+Nχ∗(F) ·L as in (6), where the line L is the birational

image of a twisted cubic C3 intersecting Ind(χ) in eight variable points. Let C3 and S

denote the strict transforms by σ of C3 and of the scroll S. Remark that C3 ·S = 24 is

given by 8 points of ind(χ) counted with multiplicity 3. Then C3 · S = 0. This means

that the subsequent contraction of S by f does not affect C3; we get:

Nχ∗(F) · L = Nσ−1
∗ (F) · C3 = (d(F) + 2) · 3− 8 · l(Ind(χ),F).

For ii), denote ltris and S the strict transforms by σ of the trisecant lines ltris ⊂ S

and of S. Since S = f−1(C′
6), we get S · ltris = −1 and as asserted:

l(Ind(χ−1), χ∗(F)) = [f∗(Nχ∗(F))− l(Ind(χ−1), χ∗(F)) · S] · ltris =
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= σ−1
∗ (NF ) · ltris = d(F) + 2− 3 · l(Ind(χ),F).

ut
We remark that, in particular, if d(F) or the multiplicity l(Ind(χ),F) is preserved

by χ, then Proposition 2 gives:

d(F) + 2 = 4 · l(Ind(χ),F),

which agrees with the conclusion of Theorem 1-ii).

4.2.2 Classical flops of the standard cubic transformation

The standard Cremona transformation of CP 3 (easily generalized to higher dimensions)

is given by C(x : y : z : w) = (yzw : xzw : xyw : xyz) and has as indetermination set

the six edges of the fundamental tetrahedron {xyzw = 0}. Twisted cubics through the

four vertices are sent to lines and cubic surfaces with double points at the vertices are

sent to planes. There is a factorization

C = f ◦ σ−1 = fII ◦ fI ◦ (σI ◦ σII)−1,

where σI is the blowing up of the four vertices vi of the tetrahedron and σII is the

blowing up along the strict transforms rij by σI of the 6 edges rij := vivj . The six

exceptional divisors Eij = σ−1
II (rij) are then collapsed by fI to rational curves rij

′.

The last step is fII , which contracts to points v′i the strict transforms by fI ◦ σ−1 of

the four planes of the fundamental tetrahedron. The classical flop (cf. [19]) is:

fI ◦ σ−1
II ,

whose effect is to introduce one of the rulings of Eij = CP 1×CP 1 and to collapse the

other ruling, sending the curves rij to rij
′. Therefore the vertices of the tetrahedron

vi ⊂ Ind(C) have divisorial birational image by C, namely, the fundamental planes

of another tetrahedron, although the edges rij ⊂ Ind(C) of the tetrahedron are just

flopped. With these notations:

Proposition 3 Let F be a foliation of CP 3. Let C denote the standard cubic Cre-

mona transformation, let v1, . . . , v4 be the vertices of the fundamental tetrahedron and

v′1, . . . , v′4 denote the vertices of the new tetrahedron composed by the birational images

of v1, . . . , v4. Then:

i): d(C∗(F)) = 3 · d(F) + 4−
∑4

i=1 l(vi,F) and

ii): l(v′i, C∗(F)) = 2 · d(F) + 4−
∑

j 6=i l(vj ,F), j ∈ {1, 2, 3, 4}.

Proof

For i), start with d(C∗(F)) = −2+NC∗(F) ·L, for a line L which is the strict transform

by C of a twisted cubic T through v1, . . . , v4. We assert that NC∗(F) · L is computed

as

NC∗(F) · L = [σ∗I (F)−
4∑

i=1

l(vi,F)Ei] · [σ∗I (T )−
4∑

i=1

ei], (22)

where Ei := σ−1(vi) and ei ⊂ Ei is a line, with Ei · ei = −1. In other words, we assert

that it suffices to consider just the effect of σI . The reason for this is that the rational

curve σ∗I (T ) −
∑4

i=1 ei neither intersects the strict transforms by σI of the edges of
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the tetrahedron (which will be flopped by fI ◦σ−1
II ) nor intersects the strict transforms

of the fundamental planes (which will be collapsed by fII). Then from (22) we get as

desired:

d(C∗(F)) = −2 + 3 · (d(F) + 2)−
4∑

i=1

l(vi,F).

For ii), denote E′
i = f−1

II (v′i), where E′
i are the strict transforms of the fundamental

planes generated by vj , vk, vs, for i 6= j, k, s ∈ {1, 2, 3, 4}. We can write:

l(v′i, C∗(F)) = [f∗II(NC∗(F))− l(v′i, C∗(F))E′
i] · e

′
i, e′i ⊂ E′

i, e′i · E
′
i = −1. (23)

We assert that the intersection (23) can be computed as:

[σ∗I (NF )−l(vi,F)Ei−l(vj ,F)Ej−l(vk,F)Ek−l(vs,F)Es]·[σ∗I (S)−ej−ek−es], (24)

where S are conics passing by vj , vk, vs, contained in the fundamental plane generated

by them, and where Ei · ej = 0, i 6= j, Ej · ej = −1. In fact, e′i = σ∗I (S)− ej − ek − es

and the reason for forgetting the effect of the flop fI ◦ σ−1
II in the computation of (23)

is that the rational curve σ∗I (S)−ej−ek−es does not intersect the (strict transforms)

of the edges of the tetrahedron. Therefore from (24) we get, as desired:

l(v′i, C∗(F)) = 2 · (d(F) + 2)− l(vj ,F)− l(vk,F)− l(vs,F).

ut

4.2.3 Examples in higher dimension

Pencil of Enriques sextics The Enriques surfaces are special surfaces which have sin-

gular models in CP 3 given by a family of surfaces of degree 6, whose singular set are

the edges of a tetrahedron (passing doubly by the edges and triply by the vertices).

There is a sub-family with tetrahedral symmetry. From this sub-family we found the

following pencil F , where each curve is invariant by the cubic standard Cremona map:

yz2w2x + y2zw2x + y2z2wx + x2zw2y + x2z2wy + x2y2wz + t[x2y2z2 + x2y2w2 +

x2z2w2 +y2z2w2 +2yz2w2x+2y2zw2x+2y2z2wx+2x2zw2y+2x2z2wy+2x2y2wz +

xyzw3 + xyz3w + xy3zw + x3yzw] = 0.

This is an example for Theorem 1 -ii), since d(F) = 2 · 6 − 2 = 10 and for the

vertices vi,j,k = {xi = xj = xk = 0} we can compute: l(v,F) = 6 = 2 · 10+2
4 .

Pencil of 4k-tic surfaces We have examples of pencils Fk composed by surfaces of

degree 4k (∀k ≥ 1), each one invariant by the standard cubic Cremona transformation:

x2k(ykzk +ykwk +zkwk)+y2k(xkzk +xkwk +zkwk)+z2k(xkyk +xkwk +ykwk)+

w2k(xkyk+xkzk+ykzk)+t·xyzw [x2(k−1)y2(k−1)+x2(k−1)z2(k−1)+x2(k−1)w2(k−1)+

y2(k−1)z2(k−1) + y2(k−1)w2(k−1) + z2(k−1)w2(k−1)] = 0.

At the vertices vi of {xyzw = 0}: l(vi,Fk) = 4k = (3− 1) · d(Fk)+2
4 .

Examples from [17] J.V. Pereira gave me an example of a pencil Fk in CP 3 composed

by 2k-tics (k ≥ 1):

(xk − yk)(zk − wk) + t(xk − zk)(yk − wk) = 0,

where each surface in the pencil is invariant by the standard Cremona transformation.

We can compute at the vertices v of the fundamental tetrahedron: l(v,Fk) = 2k =

2 · d(Fk)+2
4 .
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Coverings of pencils in the space Composing with f(x : y : z : w) = (x2 : y2 : z2 : w2)

we get, from the next pencil of quartics F4, the following pencil F8 of octics :

F4 : txyzw + x2(yz + yw + zw) + y2(xz + xw + zw) + z2(xy + xw + yw) + w2(xy +

xz + yz), F8 : tx2y2z2w2 + x4(y2z2 + y2w2 + z2w2) + y4(x2z2 + x2w2 + z2w2) +

z4(x2y2 + x2w2 + y2w2) + w4(x2y2 + x2z2 + y2z2) = 0,

where each surface is invariant by the standard Cremona map in the space. For the

vertices v:

l(v,F8) = 6 = 2 · 2(8)− 2− 4 + 2

4
= 2 · d(F8) + 2

4
,

because Darboux formula (19) gives d(F8) = 2(8) − 2 − 4, since for the parameter

t = ∞ the surface V : x2y2z2w2 = 0 is a quartic with multiplicity µ = 2.

Examples in CP 4 and CPN We give here an example with quintics in CP 4, which

can be easily generalized to 5k-tics in CP 4 or in general of (N + 1) · k-tics in CPN . A

pencil F5 of quintic hypersurfaces where each hypersurface is invariant by the standard

(quartic) Cremona transformation is:

x2(swz + wys + yzs + yzw) + y2(zws + xws + xzs + xzw) + z2(yws + xws + xys +

xyw) + w2(yzs + xzs + xys + xyz) + s2(yzw + xzw + xyw + xyz) + txyzws = 0.

Here we compute for the vertices of the tetrahedron {xyzws = 0}: l(v,F5) = 6 =

(4− 1) · d(F5)+2
5 .

Pencils of quartic surfaces invariant by the cubo-cubic Cremona map Based on [4],

let us give an example with d(F) = 6 and l(Ind(χ),F) = 2, where F is a pencil of

quartic surfaces and each surface is invariant by the cubo-cubic map χ. For this, firstly

remark any surface π with birational image χ∗(π) produces a curve π ∩ χ∗(π) which

is χ-invariant: in fact, χ is an involution. Secondly, for each line l let πl,t be a pencil

of planes (with parameter t) containing l and consider its birational image χ∗(πl,t),

which is a cubic surface. Consider now the χ-invariant plane cubic Cl,t := πl,t∩χ∗(πl,t).

Varying πl,t in the pencil of planes we produce a (possibly singular) surface Sl, with

(Cl,t ∪ Ind(χ)) ⊂ Sl, ∀t,

passing simply by the curve Ind(χ) (cf. [4]). Since the points of Cl,t ∩ l ∈ Sl depend

on t we see that l ⊂ Sl. Then, for each t, Sl ∩ πt = Cl,t ∪ l is a degree four plane

curve, so deg(Sl) = 4. Being composed by χ-invariant curves Cl,t, the surfaces Sl are

χ-invariant. Varying now l we get a linear system of quartics Sl, from which we take a

pencil of quartics denoted F . The degree of F is d(F) = 2 · 4− 2 and l(Ind(χ),F) = 2

since the quartics in the pencil F can be taken transverse to each other along Ind(χ)

(locally F is given by xdy − ydx + h.o.t = 0 along Ind(χ)). Since χ∗(F) = F and

Ind(χ) has codimension 2, we get: l(Ind(χ),F) = 2 = (2− 1) · d(F)+2
4 .

Pencils of surfaces whose degree can be decreased There is a pencil F of sextic surfaces

passing doubly by the curve Ind(χ) of the cubo-cubic transformation and F has a

cubic surface counted twice. Darboux formula gives d(F) = 2 · 6 − 3 − 2 = 7. Taking

in account the non reduced element we can compute l(Ind(χ),F) = 3, analogously

to what happens with Halphen pencils in Section 4.1.2. So l(F , Ind(χ)) > 7+2
4 and

F ′ = χ∗(F) with d(F ′) = 1 is a pencil of quadrics not passing by Ind(χ−1), having a

plane counted twice. By other side, if G is a pencil of sextics passing doubly by the curve

Ind(χ) and free of non-reduced elements, then d(G) = 2 · 6− 2 = 10, l(Ind(χ),G) = 4
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and l(Ind(χ),G) = 4 > 10+2
4 . The transformed pencil χ∗(G) is composed by quadrics

and has d(G′) = 2.

At last, in [5] there are quintic surfaces in CP 3 having four triple points along

the vertices of the fundamental tetrahedron, for which l(v,F) = 6 (compare with

Example 4.2.3). Such pencil of quintics, considered as foliation, has d(F) = 8 and so

6 > 5 = 2 · d(F)+2
4 . The transformed pencil by the standard cubic map is a pencil of

cubics F ′ with degree d(F ′) = 4.
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